Innovative Organic Foils for Remote Analysis of Chemical Compositions
June 8, 2017 | Technische Universität DresdenEstimated reading time: 2 minutes

Scientists at the Dresden Integrated Center for Applied Physics and Photonic Materials (Direction Prof. Leo) at TU Dresden have developed ultra-thin, flexible, and cheap organic foils to access the chemical composition of samples in a remote, fast, and sustainable manner. To build those low-noise detectors for infrared radiation, the research team, headed by Prof. Vandewal, applied for the first time the absorption at the interface between organic semiconductors. The scientists see need for such sensors primarily in biomedicine as well as in pharmacy, agriculture and for industrial processing. The paper was published in Nature Communications this week.
A multitude of basic chemical compounds can be detected due to their ability to absorb infrared light. It is therefore no surprise that infrared sensors are versatilely applied – e.g. to monitor the health conditions such as sugar concentration or oxygen saturation in the blood, to control the product quality for industrial processing or to predict the ideal harvesting date in agriculture. Even tough inorganic semiconductors handle these tasks reliably; spectrometers based on this material class are expensive in production, heavy and bulky.
As demonstrated by the success of organic light emitting diodes (OLEDs), hydrocarbon based semiconductors offer a serious alternative for opto-electronic applications. In contrast to their inorganic counterparts, such devices can be realised as light-weight, flexible, highly integrated and especially low-cost foils. Previous studies carried out at the Dresden Integrated Center for Applied Physics and Photonic Materials under direction of Prof. Karl Leo already underlined these advantages for OLEDs, organic photovoltaics and transistors. In the following, the research group headed by Prof. Koen Vandewal stated the question, whether organic semiconductors would also allow for (near) infrared sensing.
Initially, the scientists encountered the hurdle of identifying organic layers which can efficiently detect near infrared (NIR) signals, since organic compounds are transparent in this region. To solve this several decades old problem, the scientists of the TU Dresden considered utilizing an effect already known in organic solar cells: When blending two organic semiconductors on a molecular level, a very weak NIR absorption at the interface between both molecule species can be measured.
Finally, Bernhard Siegmund et al. achieved the breakthrough for organic NIR detectors, when they sandwiched such blend layers between ultra-thin mirror layers. By a careful choice of the distance between both metal mirrors, they succeeded in establishing a resonance, at which the incoming light transits the blend layer dozens of times via repeated reflections at the mirrors. The resulting device only detects light with a specific wavelength in the NIR. Utilizing a variation of the organic layer thickness, the sensor can scan several wavelengths simultaneously and hence, reconstruct spectral fingerprints of, for example, food or blood samples.
The authors see with this invention a novel research domain opening, giving rise to a multitude of exciting questions of both, applied and fundamental nature. For the coming years, Siegmund, Vandewal, and coauthors expect further progress for their sensors, making them appear almost entirely transparent to the human eye.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Dymax Mexico to Showcase Light-Curing Technologies at SMTA Guadalajara Expo & Tech Forum 2025
09/05/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, will participate in SMTA Guadalajara Expo & Tech Forum, taking place September 17-18, 2025, at the Guadalajara Expo Center in Guadalajara, Jalisco, Mexico.
September 2025 SMT007 Magazine: An Eye on India
09/02/2025 | I-Connect007 Editorial TeamIndia is on track to become the world’s fastest-growing major economy within the next two years, and that momentum is already reshaping its electronics manufacturing sector. Whether you work with Indian suppliers or serve Indian customers, chances are the country will become a bigger part of your supply chain in the near future.
AiM Future, Franklin Wireless Sign MOU to Jointly Develop Lightweight AI Model and High-Efficiency 1 TOPS AI SoC Chipset
09/01/2025 | BUSINESS WIREAiM Future, a leading AI semiconductor design company, has signed a Memorandum of Understanding (MOU) with Franklin Wireless Corp., a global leader in intelligent wireless solutions, to jointly develop a lightweight AI model and a high-efficiency 1 TOPS performance AI SoC chipset.
Dymax Renews Connecticut Headquarters Lease, Reinforces Long-Term Commitment to Local Community
08/08/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, is pleased to announce the renewal and extension of its corporate lease at its 318 Industrial Lane, Torrington, headquarters.
MoU to Revolutionize Photonic Integrated Circuit (PIC) Device Testing with AI-Driven Solutions
08/07/2025 | PRNewswireLightium AG, MPI Corporation, and Axiomatic_AI Inc. have entered into a Memorandum of Understanding (MoU) to jointly develop the world's first Intelligent, Autonomous, and Integrated Test Solution (IAITS) for photonic devices.