A Twist on Printed Electronics: Printing on 3D Shapes
June 23, 2017 | Barry Matties, I-Connect007Estimated reading time: 14 minutes
Pierra: It is printed electronics in that we can print on 3D shapes. We do have the capability to make thicker lines, which is effectively 3D printing microstructures. We also have the capability to print 3D microstructures using photopolymers. The main application is printing electronic antennas and/or sensors on 3D objects. Of course you have the same flexibilities that you have with traditional 3D printers where it's all digital. It's very easy to change. It's very quick to make rapid prototyping. One of our customers, Lite-On Mobile, is a contract manufacturing company, based in Guangzhou. They have 16 of our printers and they print millions of conformal antennas and sensors for cellphones. The big advantage that they have with our technology is they're able to deliver prototypes to the customers in 3–4 days, where with the previous technology it took them 2–3 weeks.
Matties: What is the print speed? Is it a very slow or is it a robust process?
Pierra: The print speed depends on the feature size and layer thickness. There are a few parameters. I would say the print speed varies from 10 millimeters per second all the way to about 20 millimeters per second. For the Lite-On application they’re printing on four cellphone cases simultaneously on one machine. Depending on the pattern, print time can take one or two minutes to print on all four cases. So the process has high throughput and is cost effective for mass production. One million of these a month can be achieved with 16 print heads.
Matties: How does that compare to other competing technologies?
Pierra: A competing technology, for instance, in the cellphone world, is a method that's called laser direct structuring (LDS). It's a seven-step process, which includes etching and plating that is typically outsourced to a third-party vendor. Also, it's not very green and it is a longer process. By comparison ours is a very simple two-step process. You print the antenna and you cure it. It's a very quick process; it's green; it uses very little material; it doesn't involve any harsh chemicals. As far as the cost, it's actually cheaper than the current technology like LDS technology. Especially as you print larger parts. LDS is not very cost effective for large parts. For us, it makes no difference.
Matties: Is the raw material something that is purchased through you, or is this a product with multiple suppliers?
Pierra: Actually, Optomec believes in an open approach for both of our product lines, where we do not sell materials to our customers. Our customers buy powders and inks directly from material suppliers. For Aerosol Jet there are a very large number of suppliers that are selling nano-particle inks. Optomec evaluates these inks to make sure they can be used with the technology. The ink viscosity range at room temperature can be in the range of 1 to 1000 cp. And for nano-particle inks, it is preferred that the particles are less than 200 nanometers in diameter. So in essence, if the material can be suspended in a solution and atomized, it can be printed with Aerosol Jet technology.
Matties: I see you have on your screen here about 30 or so suppliers. So supply is not an issue. What about investment? What would someone look at for basically getting up and running?
Pierra: Just the last word on the materials; Aerosol Jet supports a wide variety of materials used in the electronics industry. For example, the system supports printing of non-metallic conductors such as PDOT:PSS and carbon nanotubes, resistive inks, dielectrics, adhesives, conductive adhesives, semiconductors, and even biologic materials. Most recently we introduced support for copper and copper/nickel alloy (Constantan) inks.
Matties: There's a lot of flexibility in this.
Pierra: There are endless possibilities.
Matties: One unit will handle multiple materials. They don't have to buy independent machines. You can use silver one day and carbon the next?
Pierra: That's exactly right. It's not a problem. Actually, when you print multi-layer circuitry, you can first print the silver, then you print the dielectric, then you print silver again, and then you print conductive epoxy to attach the components.
Matties: There's a big market for that. We're watching a couple other companies that are really focused on this multi-layer circuit printing from vapor to final board.
Pierra: So to answer your question on investment, Optomec offers a variety of system configurations for use in R&D to high volume production. Entry prices start at around $250,000.
Matties: When you take that investment, and compare it to the advantage GE has, the ROI must be quick.
Pierra: Correct. ROI will depend on the applications, of course. You are right to highlight that the ROI is not only on the manufacturing cost saving itself but also on the overall savings associated with the entire application.
Matties: I expect, depending on individual circumstances, it would be a pretty quick ROI.
Pierra: Yes, many new prospective customers are interested. The price is not really an issue.
Matties: How many units do have already in play?
Pierra: Today, Optomec has sold more than 300 systems in 20 countries. About 70% are Aerosol Jet and the remainder are LENS.
Matties: So it's proven technology. Well tested. It's been in the market for many years. People can buy this with confidence.
Pierra: Absolutely. The technology has been on the market or more than 15 years.
Matties: What sort of maintenance concerns would they have with your technology?
Pierra: For the aerosol jet, the maintenance is very minimal. Of course, because it's an ink-based technology, you must clean it periodically. For our production systems the cleaning cycle is once every four hours. However, downtime is minimized because the dirty print head can be quickly removed (without tools) and a clean head can be swapped in. The system is then back up and running quickly, while the dirty head is placed in a cleaning bath and ready to go again in just a few hours.
Matties: Great. Pascal, I certainly appreciate you taking time to talk with us today. Thank you.
Pierra: Thank you.
Page 2 of 2Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.
How Good Design Enables Sustainable PCBs
08/21/2025 | Gerry Partida, Summit InterconnectSustainability has become a key focus for PCB companies seeking to reduce waste, conserve energy, and optimize resources. While many discussions on sustainability center around materials or energy-efficient processes, PCB design is an often overlooked factor that lies at the heart of manufacturing. Good design practices, especially those based on established IPC standards, play a central role in enabling sustainable PCB production. By ensuring designs are manufacturable and reliable, engineers can significantly reduce the environmental impact of their products.