Making Wires of Polymer Chains
June 16, 2017 | A*STAREstimated reading time: 2 minutes

Consumer demand continually pushes the electronics industry to design smaller devices. Now researchers at A*STAR have used a theoretical model to assess the potential of electric wires made from polymer chains that could help with miniaturization.
As conventional silicon-integrated circuits reach their lower size limit, new concepts are required such as molecular electronics — the use of electronic components comprised of molecular building blocks. Shuo-Wang Yang at A*STAR Institute of High Performance Computing together with his colleagues and collaborators, are using computer modeling to design electric wires made of polymer chains.
“It has been a long-standing goal to make conductive molecular wires on traditional semiconductor or insulator substrates to satisfy the ongoing demand miniaturization in electronic devices,” explains Yang.
Progress has been delayed in identifying molecules that both conduct electricity and bind to substrates. “Structures with functional groups that facilitate strong surface adsorption typically exhibit poor electrical conductivity, because charge carriers tend to localize at these groups,” he adds.
Yang’s team applied density functional theory to a two-step approach for synthesizing linear polymer chains on a silicon surface1,2. “This theory is the best simulation method for uncovering the mechanism behind chemical reactions at atomic and electronic levels. It can be used to predict the reaction pathways to guide researchers,” says Yang.
The first step is the self-assembled growth of single monomers on to the silicon surface. Yang’s team studied several potential monomers including, most recently, a thiophene substituted alkene1 and a symmetrical benzene ring with three alkynes attached2. The second step is the polymerization of the tethered monomers by adding a radical to the system.
According to the calculations, these tethered polymers are semiconductors in their natural state. “We introduced some holes, such as atomic defects, to the wires to shift the Fermi levels and make them conductive,” Yang explains.
The team then studied the electron band structures of each component before and after tethering and polymerization; finding little charge transfer between the molecular wires and the silicon surfaces. “The surface-grafted polymers and underlying substrates seem independent of each other, which is an ideal model of a conductive molecular wire on a traditional semiconductor substrate,” says Yang.
“Our finding provides a theoretical guide to fabricating ideal molecular wires on traditional semiconducting surfaces,” he adds. The team is plans to extend their work to study 2D analogs of these 1D polymer chains that could work as a metallic layer in molecular electronic devices.
Suggested Items
American Standard Circuits to Exhibit and Speak at SMTA Oregon Expo
05/14/2025 | American Standard CircuitsAnaya Vardya, President, and CEO of American Standard Sunstone Circuits has announced that his company will be exhibiting SMTA Oregon Expo & Tech Forum to be held on May 20 at the Wingspan Events and Conference Center in Hillsboro, Oregon.
EIPC Summer Conference 2025: PCB Innovation in Edinburgh
04/18/2025 | EIPCEIPC have very wisely selected this wonderful city in Scotland as the venue for their Summer Conference on June 3-4. Whilst delegates will be distilling the proven information imparted by the speakers in the day, in the evening they will be free spirits at the Conference Dinner.
Transforming the Future of Mobility: DuPont Unveils Silver Nanowire Products in South Korea
04/17/2025 | DuPontDuPont will showcase its state-of-the-art products that incorporate silver nanowire technologies in Hall D, Booth A31 at Electronics Manufacturing Korea (EMK) and Automotive World Korea (AWK) exhibitions from April 16 to 18.
Best Papers from SMTA International Announced
04/10/2025 | SMTAThe SMTA is pleased to announce the Best Papers from SMTA International 2024. The winners were selected by members of the conference technical committee. Awards are given for "Best of Proceedings" as well as "Best Practical and Applications-Based Knowledge" categories. A plaque is given to primary authors of all winning papers for these exceptional achievements.
Thales & Saildrone Integrate Blue Sentry Array with Uncrewed Systems
04/07/2025 | ThalesThales Australia and Saildrone announce successful integration of the Thales Blue Sentry array and Saildrone’s uncrewed systems. A potent new national security capability, now proven at sea