New 'Gold Standard' for Flexible Electronics
June 27, 2017 | U.S. Department of Energy, Office of ScienceEstimated reading time: 2 minutes

What if solar panels were both more efficient and more rugged? A new economical process makes optically transparent, flexible, and conductive gold films that could answer that question. The process deposits a single crystal gold film (Science, "Epitaxial lift-off of electrodeposited single crystal gold foils for flexible electronics"). The ability to grow single crystal gold is one of the vital scientific characteristics that allows device-grade electronics to be built.
A new recipe for making thin gold (Au) films for electronics starts with a silicon (Si) wafer (A), the standard starting surface for microelectronics. A thin layer of gold (B) is deposited onto the silicon by a process that results in an ordered gold layer. The gold layer contained pores due to the process. The silicon-gold layers are immersed in an acid bath, and a silicon oxide (SiOx) layer forms between the silicon-gold layers (C). An adhesive layer is applied on top of the gold foil (D), and another acid is used to remove the silicon oxide (E). The gold-adhesive foil is detached from the silicon (F), allowing the silicon to be reused. The resulting gold foil is very flexible (G) and conductive; it can be used in flexible electronics. (Image: Jay Switzer)
The new process can enable flexible electronic devices. Such devices include wearable solar cells, sensors, and flexible displays with superior properties.
Researchers developed a simple and inexpensive new process for making single crystalline, wafer-size, flexible, transparent, and conductive gold foils using a silicon wafer as a template.
The new process for making crystalline gold foil is valuable for flexible electronic devices such as wearable solar cells, sensors, and flexible displays. Gold was deposited from solution while applying an electric current (through a process called electrodeposition) onto an atomically ordered silicon wafer as a template, resulting in a gold film that was also crystalline (due to a process called epitaxial growth).
Other film fabrication methods, such as vapor deposition, result in polycrystalline gold films, which are not preferred due to their poor electronic properties and less efficient devices.
New in this research, scientists removed the ordered gold foil from the silicon wafer by forming a silicon oxide that could be etched away.
The silicon oxide formation was a two-step process. First, using the pores in the gold foil, water was able to reach the gold-silicon interface, providing oxygen to the surface. Second, the chemical reaction was catalyzed by exposure to light through a process called photoelectrochemical oxidation.
The gold foil was used as a template for the fabrication of three types of flexible electronic devices:
- A diode formed by the deposition of an inorganic semiconductor cuprous oxide
- An organic light-emitting diode (OLED) by spin coating of the organic light emitter tris(bipyridyl)ruthenium(II)
- Zinc oxide nanowires that can be used as a wide band gap semiconductor and in piezoelectric applications.
All three types of devices showed excellent device characteristics. For the materials tested for mechanical properties, the gold films and zinc oxide nanowires, the quality did not degrade after several hundred bending cycles, demonstrating the viability of the gold films in flexible electronics applications. The gold itself can also be used as a device, such as a wearable sensor.
Suggested Items
KYZEN’s Adam Klett to Present at 2025 SMTA Electronics in Harsh Environments Conference
05/05/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, announced today that Director of Science Adam Klett, PhD will present during the technical conference at the 2025 SMTA Electronics in Harsh Environments Conference.
Datest Expands Presence in the Upper Midwest with Omni-Tec Partnership
05/05/2025 | DatestDatest, a trusted leader in advanced testing, engineering, inspection, and failure analysis services, is proud to announce its partnership with Gary Krieg of Omni-Tec, Inc. as its official sales representative in the Upper Midwest.
DuPont Exceeds Quarterly Profit Expectations as Electronics Segment Benefits from Semiconductor Demand
05/05/2025 | I-Connect007 Editorial TeamDuPont reported higher-than-expected earnings for the first quarter of 2025, supported by increased demand in its electronics and industrial segments. The company’s adjusted earnings per share came in at 79 cents, surpassing the average analyst estimate of 65 cents per share, according to data from LSEG.
DuPont Reports First Quarter 2025 Results
05/02/2025 | PRNewswireDuPont announced its financial results for the first quarter ended March 31, 2025.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.