Spin Currents Switch at Terahertz Frequencies
July 4, 2017 | DESYEstimated reading time: 2 minutes

The technology of spintronics is based on the intrinsic spin of electrons. In the medium term, it is set to replace electronics as the basis for technical devices. DESY scientist Lars Bocklage has discovered a new way of producing ultrafast spin currents. His calculations, which have now been published in the Physical Review Letters, suggest that the spin current can operate at terahertz frequencies – a thousand times faster than the speeds achievable at the moment.
Spin is a quantum mechanical property of the electron and a measure of its intrinsic angular momentum. Like the electrical charge of an electron in electronics, its spin can also be used to process or store information. This field of research is known as spintronics, in analogy to electronics. Spintronic devices are already being used today for the read heads of hard disks and for magnetoresistive sensors. However, spinelectronics is a pure nanotechnology, because spin currents only travel extremely short distances before losing the information they carry. Nevertheless, spintronics could one day replace electronics altogether and process signals not only extremely quickly but also very energy-efficiently. This is because, in contrast to electronics, no electrons have to flow as a current in spintronics, producing waste heat and thereby consuming energy.
Like electrical currents, spin currents can be created by fluctuating magnetic fields. A spin current can also be “pumped” from a magnetic material into a neighbouring non-magnetic material; the spin current then also exists inside the other material for some distance. The effect is particularly pronounced when the magnetic material is excited by an external magnetic field at its resonant frequency. This typically lies around a few gigahertz, the frequency at which modern-day mobile communication devices or computer processors are operated. A gigahertz (GHz) corresponds to one billion oscillations per second, a terahertz (THz) is a thousand times faster, i.e. one trillion oscillations per second.
Bocklage’s calculations show that ultrafast spin currents can be produced at one thousand times higher frequencies than has hitherto be possible. Surprisingly, the spin current does not drop to zero, even when the excitation is not driven at the resonant frequency. “The rapid temporal fluctuation in the magnetisation compensates for the decrease in the amplitude of the magnetisation,” explains Bocklage. “This leads to a sustained spin current at very high frequencies, which stabilises at around ten percent of the resonant frequency current. By exciting it using terahertz radiation, as is now used by full-body scanners at airports and for which intense sources are currently being developed in modern-day laser research, the THz spin current can be even greater.” Another advantage is that the terahertz spin current oscillates in unison with the magnetic field that stimulates the magnetisation. This means that the spin current can be fully controlled externally via the THz magnetic field.
An electron carries a negative charge and a spin (upper picture). The spin can point in two different direction either up (red) or down (blue). Electrical currents transport charges (lower left). The spin directions cancel each other and only charges are transported by the electrical current. Spin currents transport spins. For a spin current (lower right) the electrons with different spin directions move in different directions. The charges cancel and only spins are transported. (picture: L. Bocklage).
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Indium President and CEO to Deliver ELCINA CEO Forum Keynote at Productronica India
09/17/2025 | Indium CorporationIndium Corporation President and CEO Ross Berntson will deliver the Electronic Industries Association of India (ELCINA) CEO Forum keynote at Productronica India, to be held September 17-19 in Bengaluru, India.
TTCI and The Training Connection Strengthen Electronics Manufacturing with Test Services and Training at PCB West 2025
09/16/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a trusted provider of electronic test and manufacturing solutions, and The Training Connection LLC (TTC-LLC) will exhibit at PCB West 2025, taking place Wednesday, October 1, 2025, at the Santa Clara Convention Center in California. Visitors are invited to Booth 113 to explore the companies’ complementary expertise in test engineering services and workforce development for the electronics industry.
The Marketing Minute: Cracking the Code of Technical Marketing
09/17/2025 | Brittany Martin -- Column: The Marketing MinuteMarketing is never a one-size-fits-all endeavor, but the challenges are magnified for highly technical industries like electronics. Products and processes are complex, audiences are diverse, and the stakes are high, especially when your customers are engineers, decision-makers, and global partners who depend on your expertise.
Beyond the Board: What Companies Need to Know Before Entering the MilAero PCB Market
09/16/2025 | Jesse Vaughan -- Column: Beyond the BoardThe MilAero electronics supply chain offers opportunities for manufacturers that are both prestigious and strategically important. Serving prime contractors and Tier-1 suppliers can mean long-term program stability and the satisfaction of contributing to national security. At the same time, this sector is unlike commercial electronics in almost every respect. Success requires more than technical capabilities, it requires patience, preparation, attention to detail, and a clear understanding of how the business model differs.
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.