Manipulating Electron Spins Without Loss of Information
July 19, 2017 | University of BaselEstimated reading time: 2 minutes

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute.
Electrons rotate on their way through the chip in a spiral pattern. Adjustments in the voltage lead to changes in the wavelengths of this pattern and thus the orientation of the spin can be controlled. At a specific location (gray box) the electron spin has a different orientation depending on the voltage. University of Basel, Department of Physics
For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled to its motion, i.e. its orbit within the chip. This spin-orbit coupling allows targeted manipulation of the electron spin by an external electric field, but it also causes the spin’s orientation to decay, which leads to a loss of information.
In an international collaboration with colleagues from the US and Brazil, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute, headed by Professor Dominik Zumbühl, have developed a new method that allows for targeted spin manipulation without the accompanying decay.
Controlling spins over long distances
The scientists have developed a chip on which an electron rotates uniformly in its orbit through the material without decay of the spin. The spin’s orientation follows a spiral pattern similar to a helix. If the voltages applied by two gate electrodes change, it affects the wavelength of the helix; the orientation of the spin can thus be influenced by a voltage change.
The Rashba and Dresselhaus fields predominantly determine the helical movement of the spin. In the experiment described above, the Dresselhaus and Rashba fields can be kept at the same level, while the overall strength of the two fields can simultaneously be controlled: in this way, the spin’s decay can be suppressed.
This allows the researchers to use voltages to adjust the spin’s orientation over distances greater than 20 micrometers, which is a particularly large distance on a chip and corresponds to many spin rotations. Spin information can thus be transmitted e.g. between different quantum bits.
Adjusting the fields with electrical voltages
This method is only possible because, as this work showed experimentally for the first time, both the Rashba field and the Dresselhaus field can be adjusted with electrical voltages. Although this was predicted more than 20 years ago in a theoretical study, it has only now been possible to demonstrate it thanks to a newly-developed measurement method based on quantum interference effects at low temperatures near absolute zero. It is expected, however, that the helix will also be able to be controlled with voltages at higher temperatures and even at room temperature.
Basis for further developments
“With this method, we can not only influence the spin orientation in situ but also control the transfer of electron spins over longer distances without losses,” says Zumbühl. The outstanding collaboration with colleagues from the University of São Paulo, the University of California and the University of Chicago provides the basis for a whole new generation of devices that build on spin-based electronics and create prospects for further experimental work.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Nordson Electronics Solutions Develops Panel-level Packaging Solution for Powertech Technology, Inc. That Achieves Yields Greater Than 99% for Underfilling During Semiconductor Manufacturing
06/11/2025 | Nordson Electronics SolutionsNordson Electronics Solutions, a global leader in reliable electronics manufacturing technologies, has developed several solutions for panel-level packaging (PLP) during semiconductor manufacturing. In one particular case, Nordson’s customer, Powertech Technology, Inc. (PTI) saw underfill yields improve to greater than 99% as they plan to transition from wafers to panels in their manufacturing operations. edwd
Airbus-built MetOp-SG Weather and Climate Satellite Shipped to Kourou
06/06/2025 | AirbusReady for launch - the first of the Airbus-built MetOp-SG weather and climate monitoring satellites left Toulouse cleanrooms a few days ago and is now en-route for Kourou, French Guiana onboard the “Canopée” transport ship.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
New TSN-MACsec IP Core for Secure Data Transmission in 5G/6G Communication Networks
04/15/2025 | FraunhoferReliability and security in broadband communication networks (5G/6G) are crucial for meeting the challenges of the digital future. Together with aconnic AG, Fraunhofer IPMS has developed an innovative IP core as part of the “RealSec5G” project, which combines the advantages of a MACsec IP core with those of a Time-Sensitive Networking (TSN) IP core.
AIM to Highlight Type 5 Solder and Other Leading Products at SMTA Capital Expo & Tech Forum
04/11/2025 | AIMAIM Solder, a leading global manufacturer of solder assembly materials for the electronics industry, is pleased to announce its participation in the upcoming SMTA Capital Expo & Tech Forum taking place on May 8 at George Mason University – Mason Square in Arlington, Virginia.