Hard Drive Boost Comes in Layers of Iron and Cobalt
July 27, 2017 | A*STAREstimated reading time: 2 minutes

A*STAR researchers have created a promising new material from thin layers of iron and cobalt that could enable magnetic recording technologies such as hard drives to be boosted with microwaves.
Zhou Tiejun, Chung Hong Jing and colleagues at the A*STAR Data Storage Institute fine-tuned both the magnetic properties and the microwave response in their thin layers, creating an ideal material to drive a tiny quantum-powered microwave generator called a spin torque oscillator.
The team had previously studied layers of cobalt and iridium and found a surprising magnetic irregularity — the material strongly preferred having its magnetic field aligned in one particular direction, a property known as magnetic anisotropy2. With careful alignment of the material, its anisotropy would make it easier to magnetize and demagnetize.
In this new work, the team found that sandwiching cobalt with iron, instead of iridium, produced stronger magnetic anisotropy and had superior microwave performance.
Microwaves generated by a spin torque oscillator embedded in the read-write head of a hard drive would make writing the data more energy efficient, Chung said.
“The microwaves effectively lower the energy barrier for flipping the direction of the magnetic domains,” says Chung.
The microwave signal would aid the switching of magnetization required to write data to a hard drive by setting the magnetic fields of the atoms in the hard drive weaving in circles, in the same way that a spinning top wobbles in circles, an effect known as precession. The cobalt-iridium stack lost the microwave energy quickly, like a top spinning on a thick carpet, an effect known as damping. However, in the cobalt-iron stack, the damping was much lower, like a top spinning on a hard polished floor.
The breakthrough came from the team’s work in separately engineering the magnetic and microwave properties of the stack, said Chung.
“We take a lot of care to achieve the desired interfacial quality of the layers. Control at the nanometer level is utterly important,” he said.
The team tested more than 30 combinations of materials, first exploring the effect of layer thickness, annealing temperature and sputtering rate and temperature. Finally, they tested them in a full stack configuration, concluding cobalt and iron in equal layers of 0.625 nanometers thickness was optimal.
Chung says there is much work still to be done to bring this technology to fruition.
“It’s difficult, because of the complexity of the material design and the challenges of integrating the spin torque oscillator into the magnetic read-write head.”
The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Soaring Inference AI Demand Triggers Severe Nearline HDD Shortages; QLC SSD Shipments Poised for Breakout in 2026
09/16/2025 | TrendForceTrendForce’s latest investigations reveal that the massive data volumes generated by AI are straining the global infrastructure of data center storage.
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.