Super-Light Material Possesses High Strength, Other Attributes
August 11, 2017 | Purdue UniversityEstimated reading time: 2 minutes

A new featherweight, flame-resistant and super-elastic “metamaterial” has been shown to combine high strength with electrical conductivity and thermal insulation, suggesting potential applications from buildings to aerospace.
A new composite material combines ultra-lightweight with flame-resistance, super-elasticity and other attributes that could make it ideal for various applications. Here, the material is viewed with a scanning electron microscope, while its flame resistance is put to the test.
The composite combines nanolayers of a ceramic called aluminum oxide with graphene, which is an extremely thin sheet of carbon. Although both the ceramic and graphene are brittle, the new metamaterial has a honeycomb microstructure that provides super-elasticity and structural robustness. Metamaterials are engineered with features, patterns or elements on the scale of nanometers, or billionths of a meter, providing new properties for various potential applications.
Graphene would ordinarily degrade when exposed to high temperature, but the ceramic imparts high heat tolerance and flame-resistance, properties that might be useful as a heat shield for aircraft. The light weight, high-strength and shock-absorbing properties could make the composite a good substrate material for flexible electronic devices and “large strain sensors.” Because it has high electrical conductivity and yet is an excellent thermal insulator, it might be used as a flame-retardant, thermally insulating coating, as well as sensors and devices that convert heat into electricity, said Gary Cheng, an associate professor in the School of Industrial Engineering at Purdue University.
“This material is lighter than a feather,” he said. “The density is really low. It has a very high strength-to-weight ratio.”
“The outstanding properties of today’s ceramic-based components have been used to enable many multifunctional applications, including thermal protective skins, intelligent sensors, electromagnetic wave absorption and anticorrosion coatings,” Cheng said.
However, ceramic-based materials have several fundamental bottlenecks that prevent their ubiquitous use as functional or structural elements.
“Here, we report a multifunctional ceramic-graphene metamaterial with microstructure-derived super-elasticity and structural robustness,” Cheng said. “We achieved this by designing a hierarchical honeycomb microstructure assembled with multi-nanolayer cellular walls serving as basic elastic units. This metamaterial demonstrates a sequence of multifunctional properties simultaneously that have not been reported for ceramics and ceramics–matrix–composite structures.”
The composite material is made of interconnected cells of graphene sandwiched between ceramic layers. The graphene scaffold, referred to as an aerogel, is chemically bonded with ceramic layers using a process called atomic layer deposition.
“We carefully control the geometry of this graphene aerogel,” he said. “And then we deposit very thin layers of the ceramic. The mechanical property of this aerogel is multifunctional, which is very important. This work has the potential of making graphene a more functional material.”
The process might be scaled up for industrial manufacturing, he said.
Future work will include research to enhance the material’s properties, possibly by changing its crystalline structure, scaling up the process for manufacturing and controlling the microstructure to tune material properties.
Suggested Items
Moog Announces Acquisition of COTSWORKS
07/07/2025 | BUSINESS WIREMoog Inc., a worldwide designer, manufacturer and systems integrator of high-performance precision motion and fluid controls and control systems, announced the acquisition of COTSWORKS Inc., an aerospace and defense fiber optics transceiver component manufacturer, for a purchase price of $63 million.
S&K Aerospace Awarded Major Contract Under DLA Maritime Acquisition Advancement Program
07/02/2025 | BUSINESS WIRES&K Aerospace, LLC has been awarded a significant contract under the Defense Logistics Agency’s (DLA) Maritime Acquisition Advancement Program, managed by the U.S. Naval Supply Command - Weapon Systems Support (NAVSUP WSS) in Mechanicsburg, PA.
Green Circuits to Exhibit Full-Service Electronics Manufacturing Solutions at 2025 SMD Symposium
07/02/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce its participation in the 2025 SMD Symposium, taking place August 5-7 at the Von Braun Center in Huntsville, Alabama.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/27/2025 | Nolan Johnson, I-Connect007While news outside our industry keeps our attention occupied, the big news inside the industry is the rechristening of IPC as the Global Electronics Association. My must-reads begins with Marcy LaRont’s exclusive and informative interview with Dr. John Mitchell, president and CEO of the Global Electronics Association. For designers, have we finally reached the point in time where autorouters will fulfill their potential?
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.