2-Faced 2-D Material Is a First at Rice
August 15, 2017 | Rice UniversityEstimated reading time: 2 minutes
Like a sandwich with wheat on the bottom and rye on the top, Rice University scientists have cooked up a tasty new twist on two-dimensional materials.
The Rice laboratory of materials scientist Jun Lou has made a semiconducting transition-metal dichalcogenide (TMD) that starts as a monolayer of molybdenum diselenide. They then strip the top layer of the lattice and replace precisely half the selenium atoms with sulfur.
The new material they call Janus sulfur molybdenum selenium (SMoSe) has a crystalline construction the researchers said can host an intrinsic electric field and that also shows promise for catalytic production of hydrogen.
Rice materials scientists replace all the atoms on top of a three-layer, two-dimensional crystal to make a transition-metal dichalcogenide with sulfur, molybdenum and selenium. Click on the image for a larger version. Illustration by Jing Zhang
The two-faced material is technically two-dimensional, but like molybdenum diselenide it consists of three stacked layers of atoms arranged in a grid. From the top, they look like hexagonal rings a la graphene, but from any other angle, the grid is more like a nanoscale jungle gym.
Tight control of the conditions in a typical chemical vapor deposition furnace — 800 degrees Celsius (1,872 degrees Fahrenheit) at atmospheric pressure — allowed the sulfur to interact with only the top layer of selenium atoms and leave the bottom untouched, the researchers said. If the temperature drifts above 850, all the selenium is replaced.
“Like the intercalation of many other molecules demonstrated to have the ability to diffuse into the layered materials, diffusion of gaseous sulfur molecules in between the layers of these Van der Waals crystals, as well as the space between them and the substrates, requires sufficient driving force,” said Rice postdoctoral researcher Jing Zhang, co-lead author of the paper with graduate student Shuai Jia. “And the driving force in our experiments is controlled by the reaction temperature.”
This image shows top (left) and side views of Janus sulfur molybdenum selenium created at Rice University. Careful control of heating allows sulfur to replace just the top plane of selenium atoms in the new two-dimensional material. Click on the image for a larger version. Courtesy of the Lou Group
Close examination showed the presence of sulfur gave the material a larger band gap than molybdenum diselenide, the researchers said.
“This type of two-faced structure has long been predicted theoretically but very rarely realized in the 2-D research community,” Lou said. “The break of symmetry in the out-of-plane direction of 2-D TMDs could lead to many applications, such as a basal-plane active 2-D catalyst, robust piezoelectricity-enabled sensors and actuators at the 2-D limit.”
He said preparation of the Janus material should be universal to layered materials with similar structures. “It will be quite interesting to look at the properties of the Janus configuration of other 2-D materials,” Lou said.
Co-authors of the paper are graduate students Weibing Chen and Zehua Jin and postdoctoral researcher Hua Guo of Rice; research scientist Iskandar Kholmanov and professor Li Shi, the Myron L. Begeman Fellow in Engineering at the University of Texas at Austin; and graduate students Liang Dong and Dequan Er and Vivek Shenoy, a professor of materials science and engineering, of mechanical engineering and applied mechanics and of bioengineering at the University of Pennsylvania. Lou is a professor of materials science and nanoengineering.
The Air Force Office of Scientific Research, the Welch Foundation, the Army Research Office and the National Science Foundation supported the research.
Suggested Items
Strategic Materials Conference 2025 Spotlights Materials Innovation to Advance Semiconductor Manufacturing
06/02/2025 | SEMIWith materials innovation at the core of next-generation semiconductor technologies, the Strategic Materials Conference (SMC) 2025 brings together top executives and technology leaders from the semiconductor manufacturing industry for exclusive insights into the latest trends and advancements.
CE3S Launches EcoClaim Solutions to Simplify Recycling and Promote Sustainable Manufacturing
05/29/2025 | CE3SCumberland Electronics Strategic Supply Solutions (CE3S), your strategic sourcing, professional solutions and distribution partner, is proud to announce the official launch of EcoClaim™ Solutions, a comprehensive recycling program designed to make responsible disposal of materials easier, more efficient, and more accessible for manufacturers.
American Made Advocacy: Lobbying Congress Supports the Supply Chain
05/27/2025 | Shane Whiteside -- Column: American Made AdvocacyThe upheaval in world markets is driving daily headlines. The global supply chain has seemed “normal” for the microelectronics industry because over the past three decades, an increasing percentage of microelectronics components and materials have been made overseas. For many years, other countries, primarily in Asia, invested heavily in their microelectronics industry while U.S. companies offshored manufacturing services in pursuit of the lowest cost.
Dymax to Showcase Light-Cure Solutions at The European Battery Show 2025
05/23/2025 | Dymax CorporationDymax, a global manufacturer of rapid light-curing materials and equipment, will exhibit at The European Battery Show 2025 in Stand 4-C60
Pioneering Energy-Efficient AI with Innovative Ferroelectric Technology
05/22/2025 | FraunhoferAs artificial intelligence (AI) becomes increasingly integrated into sectors such as healthcare, autonomous vehicles and smart cities, traditional computing architectures face significant limitations in processing speed and energy efficiency