DARPA’s Drive to Keep the Microelectronics Revolution at Full Speed Builds Its Own Momentum
August 28, 2017 | DARPAEstimated reading time: 2 minutes
To perpetuate the pace of innovation and progress in microelectronics technology over the past half-century, it will take an enormous village rife with innovators. This week, about 100 of those innovators throughout the broader technology ecosystem, including participants from the military, commercial, and academic sectors, gathered at DARPA headquarters at the kickoff meeting for the Agency’s new CHIPS program, known in long form as the Common Heterogeneous Integration and Intellectual Property (IP) Reuse Strategies program.
“Now we are moving beyond pretty pictures and mere words, and we are rolling up our sleeves to do the hard work it will take to change the way we think about, design, and build our microelectronic systems,” said Dan Green, the CHIPS program manager. The crux of the program is to develop a new technological framework in which different functionalities and blocks of intellectual property—among them data storage, computation, signal processing, and managing the form and flow of data—can be segregated into small chiplets, which then can be mixed, matched, and combined onto an interposer, somewhat like joining the pieces of a jigsaw puzzle. Conceivably an entire conventional circuit board with a variety of different but full-sized chips could be shrunk down onto a much smaller interposer hosting a huddle of yet far smaller chiplets.
Central to the design and intention of the program is the creation of a new community of researchers and technologists that mix-and-match mindsets, skillsets, technological strengths, and business interests. That is why the dozen selected prime contractors for the program include large defense companies (Lockheed Martin, Northrop Grumman, and Boeing), large microelectronics companies (Intel, Micron, and Cadence Design Systems), other semiconductor design players (Synopsys, Intrinsix Corp., and Jariet Technologies), and university teams (University of Michigan, Georgia Institute of Technology, and North Carolina State University). What’s more, many of these prime contractors will be working with additional partners who will extend the village of innovators working on the CHIPS program.
“If the CHIPS program is successful, we will gain access to a wider variety of specialized blocks that we will be able to integrate into our systems more easily and with lower costs,” said Green. “This should be a win for both the commercial and defense sectors.”
Among the specific technologies that could emerge from this newly formed research community are compact replacements for entire circuit boards, ultrawideband radio frequency (RF) systems, which require tight integration of fast data converters with powerful processing functions, and, by combining chiplets that provide different accelerator and processor functions, fast-learning systems for teasing out interesting and actionable data from much larger volumes of mundane data. “By bringing the best design capabilities, reconfigurable circuit fabrics, and accelerators from the commercial domain, we should be able to create defense systems just by adding smaller specialized chiplets,” said Bill Chappell, director of DARPA’s Microsystems Technology Office.
“The CHIPS program is part of DARPA’s much larger effort, the Electronics Resurgence Initiative, in which we are striving to build an electronics community that mixes the best of the commercial and defense capabilities for national defense,” Chappell said. “The ERI, which will involve roughly $200 million annual investments for the next four years, will nurture research in materials, device designs, and circuit and system architecture. The next round of investments are expected this September as part of the broader initiative.”
Suggested Items
Designing for Cost to Manufacture
11/21/2024 | Marcy LaRont, I-Connect007ICAPE's Richard Koensgen, a seasoned field application engineer with a rich background in PCB technology, shares his journey of working with customers and manufacturers through the intricacies of circuit board development and emphasizes the importance of early-stage collaboration with PCB designers. With a focus on tackling the most challenging aspects of PCB design and manufacturing, he discusses everything from layout considerations to the thermal challenges of today's technology when it comes to designing for cost.
OSI Systems Receives $11M Order for Electronic Assemblies
11/21/2024 | BUSINESS WIREOSI Systems, Inc announced that its Optoelectronics and Manufacturing division has received an order for approximately $11 million to provide critical electronic sub-assemblies for a leading-edge healthcare original equipment manufacturer (OEM), known for innovative and specialized medical solutions.
CHIPS for America Announces Up to $300M in Funding to Boost U.S. Semiconductor Packaging
11/21/2024 | U.S. Chamber of CommerceThe Biden-Harris Administration announced that the U.S. Department of Commerce (DOC) is entering negotiations to invest up to $300 million in advanced packaging research projects in Georgia, California, and Arizona to accelerate the development of cutting-edge technologies essential to the semiconductor industry.
NTT, Olympus Joint Demonstration Shows IOWN APN's Low-latency Capability
11/21/2024 | JCN NewswireNTT Corporation and Olympus Corporation announced that, following the start of their joint experiment in March of the world’s first cloud endoscope system which processes endoscopic videos on the cloud, they jointly established a cloud endoscopy system utilizing the IOWN APN technology.
Hon Hai Joins OpenUSD Alliance to Promote Standardized and Open Source Universal Scenario Description (USD) Technology
11/21/2024 | Hon Hai Technology GroupHon Hai Technology Group , the world’s largest technology manufacturing and service provider, announced that it has joined the Alliance for OpenUSD (AOUSD ) to support the construction of a 3D ecosystem and promote Cooperation among various industries around the world promotes the standardization of Universal Scene Description (USD ).