Researchers Are One Step Closer to Making Integrated Quantum Optical Circuits a Reality
September 1, 2017 | KTHEstimated reading time: 2 minutes

KTH researchers have taken a significant step toward enabling optical quantum information processing on a chip. A new method in quantum nano photonics was published today in Nature Communications.
The group, from KTH Royal Institute of Technology, has managed to create the building blocks of such a system by integrating artificial atoms (quantum dots) in silicon-based photonic chips. They have generated and filtered single photons on-chip without the use of any external components. The results are presented in an article in the scientific journal Nature Communications.
Quantum computers and networks are expected to outperform today’s classical computers and networks, which encode information in binary bits. Rather than bits consisting of ones and zeros, quantum bits can simultaneously take a superposition of both values, which means that they can process significantly higher amounts of information with fewer calculation steps. Potential applications include energy efficient computation, sensing and secure communication.
However, there are challenges to overcome in order to be able to develop effective integrated quantum circuits. The Quantum Nano Photonics group at KTH solves these challenges in the work presented in Nature Communications, says KTH researcher Ali Elshaari, a co-author of the study.
In the past, it has been extremely difficult to isolate quantum dots and to place them in a useful circuit, as they are randomly grown without having high control over their properties and their position in the circuit. Additionally, it is difficult to generate single photons on the same chip without using external filtering to remove all unwanted signals from the quantum emitters and background light, Elshaari says.
The research team, led by Professor Val Zwiller and Klaus D. Jöns, used a novel nanomanipulation technique to transfer selected and pre-characterized single photon emitters in nanowires, on a silicon chip. The team then built an integrated optical circuit to filter single photons and multiplex them. The latter means using multiple quantum dots to generate light in various “colors” that can be used to encode different information on the same chip, he says.
“In order to achieve a functioning integrated quantum circuit, one must build its components deterministically,” Elshaari says. “That means every component of the circuit is carefully designed and optimized to perform a specific task. There is no room for randomness or chance when it comes to the characteristics of the source or its location in the optical circuit, unlike previous approaches.”
One of the new achievements of the research team's work is that they have created a hybrid approach that combines two semiconductor technologies, III-V technology in the form of nanowire-based quantum emitters, and silicon technology in the form of the integrated optical circuit, he says.“Hybrid integration with nanowires has not been done before. The results are a very important step toward enabling quantum information processing on a chip.”
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.
AI-Powered Wearables Transform How Consumers Interact with Everyday Technology
09/15/2025 | PR NewswireThe global demand for AI-driven, touchless wearable technologies is accelerating as consumers seek more natural, seamless and intuitive ways to interact with their devices. Traditional touch screens and voice assistants, while effective, are increasingly viewed as limiting in a world where multitasking, mobility and efficiency are key. As industries from consumer electronics to augmented reality and enterprise computing embrace the possibilities of gesture-based control, the market for neural interfaces is rapidly expanding
Hanwha Aerospace to Collaborate with BAE Systems on Advanced Anti-jamming GPS for Guided Missiles
09/15/2025 | HanwhaHanwha Aerospace has signed a contract with BAE Systems to integrate next-generation, anti-jamming Global Positioning System (GPS) technology into Hanwha Aerospace’s Deep Strike Capability precision-guided weapon system.
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.