FAU-based Researchers Solve an Enigma of Solid State Physics
September 5, 2017 | FAUEstimated reading time: 2 minutes

Researchers at FAU and the Max Planck Institute (MPI) in Halle have managed to find the answer to one of the riddles of solid-state physics.
One of the fundamental phenomena of quantum physics is the fact that electrons appear to be able to tunnel through barriers that, to all intents and purposes, should be impenetrable. However this effect, which makes use of the wave-like nature of matter, is operative over very short distances only – for instance less than a nanometre in terms of individual atoms observed under a scanning tunnelling microscope – because of the exponential decay of the wave function within the barrier.
Thus, it was all the more surprising when, some ten years ago, it was discovered that an electrical current would flow for distances up to a thousand times longer in single and double layers of graphene – in other words, a layer of graphite with a thickness of one or two atoms – actually because of this exponential decay of wave functions. This new mechanism of electron transport, however, was difficult to analyse because it was barely distinguishable from the normal transport of electrons in a standard conductor.
Initially, it seemed the effect had been clearly understood, but it soon turned out to be much more complicated when a number of sensational experiments showed that seemingly identical double layer samples proved to be either very conductive or, quite the opposite, had a high level of resistivity. Solid-state physics was facing a puzzle. A number of well-received papers proposed that there must be exotic undiscovered new states of matter, although the theories were based on the resistivity observed only.
Theory of electron transport in defective double layers
While world-wide research in the field focused on explaining the phenomena on the assumption that the material itself was perfect, FAU-based researchers Dr. Sam Shallcross and Prof. Heiko B. Weber in cooperation with Dr. Sangeeta Sharma of MPI in Halle decided to go down a different route. They developed a theory whereby electron transport was occurring because of defects in these double layers, particularly because of stacking errors that can be compared to the creases in a two-layered table cloth.
Partial dislocations of this nature in graphene double-layers were discovered and analysed a few years ago at FAU. A new method of calculating the electronic structure in double layers, the first that was capable taking precisely these stacking errors into consideration, was developed for the theory. When this method is applied to a double layer of graphene, a new kind of electron transport can be posited that has a mathematical form like that of tunnelling but which is based on a qualitative new concept in physics – the assumption that, under certain circumstances, current can flow more efficiently if there are obstacles in the way.
Shallcross, Sharma and Weber discovered much to their own amazement that, depending on positioning, this electronic structure can behave either as a conductor or an insulator, hence explaining the perplexing results of the previous experiments. They have thus produced a comprehensive explanation of the entire phenomenology of graphene double layers with no need to postulate the existence of exotic new states.
This theoretical concept can be applied to many examples of an entire material class, namely the new and exciting two-dimensional materials. Their findings also serve to point out the fundamental differences in charge transport in our familiar three-dimensional world and the world of two-dimensional materials.
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.