-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
Fueling the Workforce Pipeline
We take a hard look at fueling the workforce pipeline, specifically at the early introduction of manufacturing concepts and business to young people in this issue of PCB007 Magazine.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Tracing the Light Inside LEDs Higher Efficiency
September 14, 2017 | University of TwenteEstimated reading time: 2 minutes

White LEDs can be made even more efficient and powerful, photonics researchers of the University of Twente and Philips Lighting now prove. They found a detailed way for describing the light that stays inside the LED by absorption and scattering. This is very valuable information for the design process.
From relatively weak light sources to strong lights at home and in cars, for example : since the blue and white LED were invented, we’ve seen a rapid development in possible applications. Low energy consumption and long lifetime are major advantages over existing lighting solutions. White LEDs consist of a semiconductor emitting blue light, with on top of that phosphor plates that turn the blue light into yellow. What we see then, is white light. The light will be scattered by the phosphor particles, but part of it is absorbed as well. What part of the light will exit the LED, is not easy to predict. Unless you look at absorption and scattering in another way, according to Maryna Meretska and her colleagues. Theory from astronomy helps.
Detailed and fast
What makes good prediction particularly difficult: some of the light is absorbed, but re-emitted in another colour. One way is trying to define all possible light rays, and use a lot of computing time to get a result. This doesn’t give much insight in what is actually happening. A theory that is often used for light propagation in a LED, is diffusion theory. In strongly absorbing media, however, this approach isn’t valid anymore. Meretska therefore has built a setup to collect all the light around the phosphor plates, in the whole visual spectrum. Based on this, absorption and scattering can be deduced using the radiative transfer equation, well known in astronomy. This results in a full description of light propagation inside and outside the phosphor plates. Compared to a description using diffusion theory, the absorption level is up to 30 percent higher. At the same time, the method is about 17 times faster than the numerical approach.
Absorption: blue is based on diffusion theory, red is the new method, black is a numerical 'Monte Carlo' check.
These new insights, and their level of detail, can lead to powerful and predictive tools for LED designers. They help in further improving the efficiency.
Photonics
The research has been done in the Complex Photonic Systems group of UT’s MESA+ Institute for Nanotechnology, together with Philips Lighting in Eindhoven. The University of Twente has a strong concentration of research groups and facilities in the rapidly growing field of photonics.
The paper ‘Analytical modeling of light transport in scattering materials with strong absorption’ by Maryna Meretska, Ravitej Uppu, Gilles Vissenberg, Ad Lagendijk, Wilbert IJzerman and Willem Vos, will appear in Optics Express, one of the leading journals of the Optical Society. It is already online.
Suggested Items
Universal Avionics Connected FMS Certified on Part 25 Aircraft Models
04/01/2025 | Universal AvionicsUniversal Avionics (UA), an Elbit Systems company, today announces that FAA certification has been achieved for the installation of its Wi-Fi-enabled Flight Management System (FMS) on Part 25 aircraft models. The Approved Model List Supplemental Type Certificate (AML STC) serves as the foundation for the deployment of Universal’s Connected Avionics onto aircraft.
L3Harris Completes Sale of Commercial Aviation Solutions Business to TJC for $800 Million
03/31/2025 | BUSINESS WIREL3Harris Technologies has completed the previously announced sale of its Commercial Aviation Solutions (CAS) business to an affiliate of TJC L.P. for $800 million. The entire $800 million cash purchase price was paid to L3Harris at the closing of the transaction.
LN Phase Modulator, ASE Light Source Module for Fiber Optic Gyroscope
03/26/2025 | POINTekPOINTek, Inc., a global leader and provider of high performance athermal AWG products, announced launching of a new family of aerospace application products: Lithium Niobate Phase Modulator and ASE Light Source Module for Fiber Optic Gyroscope (FOG).
DELO Releases IBOA-free Medical Adhesive for Glucose Monitoring Sensors and Other Wearables
03/14/2025 | DELODELO has released a new light-curing medical-grade adhesive engineered with nontoxicity in mind. DELO PHOTOBOND MG4047 is designed for wearable medical applications such as glucose monitoring sensors (CGM). Its chemical properties and impermeable characteristics help prevent skin irritation in cases of media influence such as rain or sweat.Teaser
Sikorsky Successfully Flies Rotor Blown Wing UAS in Helicopter and Airplane Modes
03/10/2025 | Lockheed MartinSikorsky, a Lockheed Martin company has successfully validated the advanced control laws to successfully fly a ‘rotor blown wing’ uncrewed aerial system (UAS) in both helicopter and airplane modes.