Japan Pivotal in Advancing Energy Storage and Conversion Materials
September 19, 2017 | ACN NewswireEstimated reading time: 2 minutes

The field of solid-state ionics originated in Europe, but Japanese scientists have significantly advanced it over the past 70 years, according to a review in the journal Science and Technology of Advanced Materials (STAM).
The largest commercial application of solid state ionics are lithium-ion batteries, which Sony commercialized around 1990.The lithium-ion batteries pictured were used in some of the early Kyocera cellular phones (image credit: Sony Energy Devices Corporation).
Solid-state ionics deals with all aspects of the migration of ions (charged atoms) in solids, such as ceramics, polymers, biomaterials and their composites. Despite a common belief that solids don't conduct ions, some solids with specific structural and physical properties exhibit a fast ionic conduction, which is comparable to that of liquids.
Takehiko Takahashi of Nagoya University was the first to coin the term 'solid ionics' in 1967. 'Solid-state ionics' first appeared in 1971 in another of his papers, and was likely a play on 'solid-state electronics', another rapidly growing field at the time.
Early research focused on characterizing the crystal structures of highly conductive materials like silver and copper compounds. Over the decades, researchers have expanded the understanding of ionic conduction in different compounds involving lithium, sodium-sulfur and perovskite structures. These findings have led to the development of a variety of sensors and batteries, many of which are designed or manufactured in Japan.
For example, Sony first commercialized lithium-ion batteries in 1990, the largest commercial application of this field. Widely used in mobile electronics, lithium-ion is also being targeted for renewable energy storage, which could continue to expand the market.
Japanese scientists were key in demonstrating the effectiveness of sodium-sulfur batteries. These high-energy batteries could have potential applications in renewable energy storage and electric vehicles. A Japanese company, NGK Insulators, Ltd., commercialized the batteries in 2002. Their systems have ranged from one-megawatt to 34.8-megawatts and help stabilize renewable energy production by storing excess power and providing it to the grid when demand increases.
Gas sensors made of solid zirconia electrolyte are another key application of solid-state ionics. These sensors measure the partial pressure of oxygen in exhaust gas from car engines. They help to control the combustion conditions (air/fuel ratio) and minimize the emission of NOx and CO pollutants. Today, Japanese companies supply more than two thirds of zirconia-based oxygen sensors in cars.
Research in the field continues towards applications in nanoelectronics. It also aims to bring down the cost of solid oxide fuel cells, which are one of the most promising technologies for generation of electric energy from natural gases, but are prohibitively expensive. Scientists are still hoping to discover "fast, novel, and even exotic ion conductors in the solid state," according to the review's author Osamu Yamamoto of Mie University in Japan.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.