Thin, Flexible Device Could Provide Efficient Cooling for Mobile Electronics – or People
September 19, 2017 | UCLAEstimated reading time: 3 minutes

Engineers and scientists from the UCLA Henry Samueli School of Engineering and Applied Science and SRI International, a nonprofit research and development organization based in Menlo Park, California, have created a thin flexible device that could keep smartphones and laptop computers cool and prevent overheating.
The system’s flexibility also means it could eventually be used in wearable electronics, robotic systems and new types of personalized cooling systems. It is the first demonstration of a solid state cooling device based on the electrocaloric effect — a phenomenon in which a material’s temperature changes when an electric field is applied to it. The research was published Sept. 15 in Science.
The method devised by UCLA and SRI researchers is very energy-efficient. It uses a thin polymer film that transfers heat from the heat source (a battery or processor, typically) to a “heat sink,” and alternates contact between the two by switching on and off the electric voltage. Because the polymer film is flexible, the system could be adapted for devices with complex curvature or with moving surfaces.
“We were motivated by the idea of devising a personalized cooling system,” said Qibing Pei, UCLA a professor of materials science and engineering and the study’s principal investigator. “For example, an active cooling pad could keep a person comfortable in a hot office and thus lower the electricity consumption for building air conditioning. Or it could be placed in a shoe insole or in a hat to keep a runner comfortable in the hot Southern California sun. It’s like a personal air conditioner.”
A major application could be in mobile and wearable electronics. As most smartphone and tablet users know, devices tend to heat up when they are used, particularly with power-intensive applications like video streaming. So although the devices are made with interior metal radiators designed to pull heat away from the battery and computer processors, they can still overheat, which can even cause them to shut down. And excessive heat can damage the devices’ components over time.
That tendency to overheat remains a major challenge for engineers, and with the anticipated introduction of more flexible electronic devices, it’s an issue that researchers and device manufacturers are working hard to address. The cooling systems in larger devices like air conditioners and refrigerators, which use a process called vapor compression, are simply too large for mobile electronics. (They’re also impractical for smartphones and wearable technology because they use a chemical coolant that is an environmental hazard.)
“The development of practical efficient cooling systems that do not use chemical coolants that are potent greenhouse gases is becoming even more important as developing nations increase their use of air conditioning,” said Roy Kornbluh, an SRI research engineer.
The UCLA–SRI system also has certain advantages over another advanced type of cooling system, called thermoelectric coolers, which require expensive ceramic materials and whose cooling capabilities don’t yet measure up to vapor compression systems.
Pei said the invention’s other potential applications could include being used in a flexible pad for treating injuries, or reducing thermal “noise” in thermographic cameras, which are used by scientists and firefighters, and in night-vision devices, among other uses.
The study’s lead authors are UCLA postdoctoral scholar Rujun Ma and doctoral student Ziyang Zhang, both members of Pei’s research group. Other authors are Kwing Tong, a UCLA graduate student; David Huber, a research engineer at SRI; and Yongho Sungtaek Ju, a UCLA professor of mechanical and aerospace engineering.
The research was supported by the Department of Energy’s Advanced Research Projects Agency–Energy and by the Air Force Office of Scientific Research. The researchers have submitted a U.S. patent application for the device.
Suggested Items
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
Kitron: Q1 2025 - Strong Start to the Year
04/25/2025 | KitronKitron reported first-quarter results characterised by continued momentum in the Defence & Aerospace market sector and a growing order backlog.
RTX's Collins Aerospace Enhances Capabilities to Speed Marine Corps Decision-making in Battle
04/22/2025 | RTXCollins Aerospace, an RTX business, successfully demonstrated new technology that helps the military gather and use information from a wider range of sources at Project Convergence Capstone 5, a large-scale military exercise.
AdvancedPCB Appoints Gary Stoffer as Chief Commercial Officer
04/18/2025 | PRNewswireAdvancedPCB is proud to announce the appointment of Gary Stoffer as its new Chief Commercial Officer (CCO). In this role, Stoffer will lead all sales, marketing, and commercial strategy initiatives as the company continues its mission to deliver cutting-edge PCB solutions to industries worldwide.
Real Time with... IPC APEX EXPO 2025: GreenSource's Growth and Future Developments
04/15/2025 | Real Time with...IPC APEX EXPOThings are looking bright for GreenSource. Michael Gleason shares an update on GreenSource's recent growth and upcoming changes. A recipient of a Defense Production Act Investment Program award, GreenSource is planning for new substrate capabilities. Current investments continue to enhance equipment and sustainability initiatives such as water quality. And their unique collaboration with the University of New Hampshire continues to aid their workforce development, despite recruitment challenges.