Pitt Receives NIH Grant to Develop 3-D Tissue Chips that Mimic Human Joints
September 20, 2017 | UPMCEstimated reading time: 2 minutes
The National Institutes of Health (NIH) has awarded a $1.2 million grant to a multi-institutional project led by the University of Pittsburgh to engineer a three dimensional joint-on-a-chip called the “microJoint,” to replicate a human joint on a small scale. The microJoint will be used to study and test drugs for the treatment of arthritic joint diseases.
Tissue components of the knee joint (left) modeled by the human microJoint , consisting of tissues housed in individual microbioreactors that are connected (right). Credit: Rocky Tuan/University of Pittsburgh
Trauma, inflammation, infection and aging can cause damages to joint tissues, ultimately leading to arthritic disorders, including osteoarthritis, that cause physical disability and compromise quality of life. Despite being the most common degenerative joint disease, affecting almost 1 in 6 people, osteoarthritis has no effective treatments, largely because the disease is poorly understood, and animal models that are commonly used in research do not sufficiently replicate human disease due to anatomical and functional differences.
The microJoint project led by Pitt, with collaborators at Stanford University and Tulane University, is part of a national initiative by the National Center for Advancing Translational Sciences (NCATS) of the NIH to develop 3-D microphysiological system platforms that model human disease. The Tissue Chip for Disease Modeling and Efficacy Testing program intends to enable researchers to better recognize and identify disease and more accurately predict how patients will respond to treatment drugs. The Pitt project is the only one in the program that is focusing on degenerative joint diseases.
Pitt is one of 13 institutions receiving NIH awards to support research aimed at improving the success rate of drugs that are tested in clinical trials. Currently, more than 60 percent of investigational drugs fail in clinical trials due to a lack of effectiveness, despite showing promise in cell and animal research models.
“We’re building what will be the first joint-on-a-chip that we hope will accurately replicate arthritic diseases in humans, and thus allow in-depth understanding of the disease process that will lead to discovery of potential therapies,” said principal investigator Rocky Tuan, Ph.D., director of the Center for Cellular and Molecular Engineering, and Distinguished Professor in the Department of Orthopaedic Surgery at the University of Pittsburgh School of Medicine. Tuan is internationally known for his research in stem cell biology, musculoskeletal tissue engineering, regenerative medicine, and for his innovative leadership role in biomedical education. He also is director of Pitt’s Center for Military Medicine Research and associate director of the McGowan Institute for Regenerative Medicine.
In addition to Tuan, the co-investigators on the award are Bruce Bunnell, Ph.D., director of the Tulane Center for Stem Cell Research and Regenerative Medicine and professor of pharmacology at Tulane University School of Medicine, and Stuart Goodman, M.D., professor of orthopedic surgery at Stanford University.
The researchers will engineer the chip by creating and combining multiple joint tissues, including cartilage, bone, the joint capsule and fat. The tissues will be generated using a specific type of adult stem cells called mesenchymal stem cells, encapsulated within a light-activated gel that will act as a scaffold. In addition, the model will include macrophages, which are immune cells that are linked to inflammation commonly seen in joint disorders. The biological interaction among these joint tissues and cells will be modeled by culturing them in individual custom-fabricated micro-bioreactors that are connected to each other.
The first microJoint models will seek to replicate normal joints and those affected by injury, inflammation and diabetic complications. Once that is accomplished, the researchers plan to test different drug compounds for their ability to heal diseased joints.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
U.S. Army Awards $13M IDIQ Contract to Element U.S. Space & Defense
09/11/2025 | BUSINESS WIREElement U.S. Space & Defense, a trusted leader in advanced testing and engineering services, has been awarded a multi-year indefinite-delivery/indefinite-quantity (IDIQ) contract valued at $13,021,816 from United States Army Contracting Command - Aberdeen Proving Ground (ACC-APG).
New Frontier Aerospace and Air Force Institute of Technology Sign CRADA to Advance Hypersonic VTOL Aircraft
08/05/2025 | PR NewswireNew Frontier Aerospace (NFA) is excited to announce a Collaborative Research and Development Agreement (CRADA) with the Air Force Institute of Technology (AFIT) aimed at advancing an innovative rocket-powered hypersonic Vertical Takeoff and Landing (VTOL) aircraft.
L3Harris, ELT Group to Establish Multi-Sensor Test Facility in Italy
07/28/2025 | L3Harris TechnologiesL3Harris Technologies has partnered with ELT Group, the Italian global leader in electromagnetic spectrum operations, to establish a multi-sensor test facility for commercial, military and government programs.
Thanks a Million: STI Electronics Celebrates Creating 1 Million Power Supply Boards for Night Vision Goggles
07/28/2025 | Sandy Gentry, Community MagazineIn an industry where precision and reliability are paramount, STI Electronics Inc. recently celebrated a remarkable milestone: the production of its 1 millionth power supply board for L3Harris Technologies’ state-of-the-art night vision goggles. This achievement not only marks a significant volume for military electronics manufacturing but also highlights the enduring partnership between STI and L3Harris.
SES, the Luxembourg Government to Develop and Launch New Defence Satellite for GovSat
07/25/2025 | BUSINESS WIRESES and the Luxembourg Government today announced their plan for development of a second satellite for GovSat (LuxGovSat S.A.), the public-private partnership and 50/50 joint venture between SES and the Luxembourg Government that provides secure, reliable and accessible satellite communication services for governments.