Solar Cells Made From Atomically Thin Sheet
September 26, 2017 | Tohoku UniversityEstimated reading time: 1 minute

Researchers at Tohoku University have developed an innovative method for fabricating semitransparent and flexible solar cells with atomically thin 2D materials. The new technology improves power conversion efficiency of up to 0.7% - this is the highest value for solar cells made from transparent 2D sheet materials.
Transparent or semi-transparent solar cells with excellent mechanical flexibility have attracted much attention as next-generation smart solar cells. They can be used in various applications such as on the surfaces of windows, front display panels of personal computers and cell phones, and human skin. But issues remain with regards to improving their power conversion efficiency, optical transparency, flexibility, stability and scalability.
Led by Associate Professor T. Kato, the team showed easy and scalable fabrication of semitransparent and flexible solar cells using transition metal dichalcogenides (TMDs) - an atomically thin 2D material. Using a Schottky-type configuration, power conversion efficiency can be increased up to 0.7%, which is the highest value reported with few-layered TMDs. Clear power generation was also observed for a device fabricated on a large transparent and flexible substrate.
"Since our device structure, Schottky-type solar cell, is very simple, the TMDs-based Schottky-type solar cell possesses good properties for scalability, which is one of the most important elements for use in practical applications." says Kato.
"The transparent and semi-transparent solar cell can be used in a variety of ways. This new type of solar cell is likely to have impact on the technologies we use in daily life in the near future."
Suggested Items
Yank Technologies Selected for Prestigious NASA Phase II Contract for Dust-Tolerant Resonant Connectors
05/20/2025 | PRNewswireYank Technologies, the developer of disruptive long range, high power wireless charging solutions, has been selected for a two-year follow-on Small Business Innovation Research (SBIR) Phase II contract from the National Aeronautics and Space Administration (NASA) to advance Dust-Tolerant Resonant Connectors for lunar and planetary surfaces.
Indium to Feature Power Electronics Solutions at SEMICON Southeast Asia 2025
05/19/2025 | Indium CorporationAs a trusted leader in materials science for advanced electronics assembly, Indium Corporation® is proud to showcase its innovative power electronics solutions at SEMICON Southeast Asia 2025, May 20–22, in Marina Bay Sands, Singapore.
AI Helps Build Smarter, More Resilient Power Grids
05/16/2025 | BUSINESS WIREAs society’s reliance on electricity deepens, artificial intelligence (AI) is reshaping how we manage power grids and optimize energy sources.
Corning Collaborates with Broadcom to Accelerate AI Data Center Processing Capacity
05/14/2025 | BUSINESS WIRECorning Incorporated, a world leader in glass science and optical physics, today announced a collaboration with Broadcom Incorporated, a leading supplier in the semiconductor field, on a co-packaged optics (CPO) infrastructure that will significantly increase processing capacity within data centers.
TT Electronics Secures £50 Million in New Contract Awards for Classified U.S. DoD Defense Programs
05/12/2025 | TT ElectronicsTT Electronics, a leading provider of global manufacturing solutions and engineered technologies, announced today that it has been awarded significant new contracts totalling over £50 million to support classified U.S. Department of Defense (DoD) programs.