-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Institute of Circuit Technology Hayling Island Seminar 2017
October 4, 2017 | Pete Starkey, I-Connect007Estimated reading time: 10 minutes
Bill Wilkie invited Jim Francey, sales manager, Northern Europe for Optiprint, to chair an open discussion on the possible consequences, should the proposal be accepted. There was a lively debate around the fact that PTFE was such a ubiquitous material in electronics and electrical engineering, with a unique functionality for which there was generally no practical alternative, that its prohibition would have a huge impact on the electronics industry, and might also set a precedent for others such as health care, aerospace, chemical processing and, ironically, environmental protection.
The national committee representing IEC in the UK, hosted by the British Standards Institution, had made its submission before the deadline with the following comments:
- “Unless there is scientific evidence that a total mass of halogens greater than a particular value (e.g., 0.9%) is environmentally hazardous then there should not be such a limit contained in the document.”
- “Typically, environmental restrictions are based on the properties of a compound/substance rather than the elements forming that compound. Consequently, we do not see, unless there is evidence to the contrary, why a limit on elemental halogens is valid.”
- “IEC 62474 (Material Declaration for Products of and for the Electrotechnical Industry) contains declarable halogenated compounds that are identified to cause concerns to human health and the environment. It makes sense to use the IEC 62474 database as the single source of halogens that are under this low halogen definition.”
It remains to be seen what might be the outcome.
Introduced by Bill Wilkie as “the prince of the presentations, the lord of the lecture, the doyen of the done deal,” Steve Driver, CEO of the Spirit Circuits group, gave the eagerly awaited final paper—a review of his adventures in Romania and in particular, his experiences with the Mutracx “Lunaris” ink-jet etch-resist printing system. He began by referencing and acknowledging the ICT Annual Symposium 2013, when Stuart Hayton’s presentation “The Innovator’s Dilemma—a real-world example in PCB imaging,” had first stimulated his interest in this potentially disruptive technology. Apparently, Driver as a schoolboy had a reputation for being disruptive—difficult to imagine! Whatever, he defined a disruptive technology as one that could displace an established technology and shake up the industry, or a ground-breaking product that would create a completely new industry. As an example, he quoted the decline of Kodak from a dominant position in traditional photographic film to filing for bankruptcy protection as a result of underestimating the disruptive potential of the digital camera. And he commented that selling a disruptive concept was not easy—customers did not always know what they needed and preferred the safe bet of hanging on to existing revenue streams and not risking new avenues of opportunity.
But never afraid of taking a calculated risk, Driver’s avenue of opportunity arose when he committed to establishing a start-up PCB factory in Romania, and he summarised his reasoning in choosing Lunaris. In particular, he was effectively starting with a blank canvas—a new factory and new staff, with no pre-conceived ideas of how to make a PCB. The capability of the machine matched his needs and suited his business model of agile manufacturing with reduced lead times. And it offered substantial environmental benefits, which were to his advantage in negotiating permissions and consents to manufacture with the Romanian authorities. Additionally, the machine had the advantages of a small footprint and low power consumption, and it was manufactured in Europe, with local support.
The machine was now in production in Spirit’s BATM Systems factory, Romania’s only volume PCB facility, currently processing about 350 panels per day and it could deliver in excess of 70 good prints per hour, with plans to increase this to 100.
Driver gave a candid review of his experiences, most of which were very positive. Training and support has been excellent and his operators, with no previous experience in PCB manufacture, found the machine simple and straightforward to use. Printing was a proven process and the reliability of the machine had been good, with excellent engineering support from Mutracx. Data preparation and transfer were particularly straightforward, and his CAM engineers had very quickly become expert. Maintenance and upkeep of the machine was an ongoing learning process, for both BATM Systems and Mutracx.
Two major challenges had been encountered, one concerning panel handling and one concerning surface preparation.
The Lunaris had originally been designed as an innerlayer printer, when panel flatness was not an issue because the thin material was held securely on a vacuum table during the printing operation. But BATM Systems were processing 1.6 mm rigid material, and if panels were not perfectly flat, or had burrs from panel-cutting or damaged corners from rough handling, a safety mechanism designed to protect the print-heads stopped the machine. BATM’s material suppliers were now aware of the requirement for flat, burr-free panels.
The condition of the copper surface had been observed to have a significant effect on ink adhesion, and pre-cleaning tended to increase ink adhesion to a point where stripping became a problem. BATM Systems were working with their suppliers of laminate and ink to study these effects, optimise the process and establish practicable operating conditions.
Production was predominantly single-sided and the factory was currently dedicated to producing PCBs for LED applications, generally with white solder mask and an OSP solderable finish. All the chemistry from the etching and cleaning lines was treated, regenerated and recirculated in a closed loop system.
Driver was delighted to report that the factory had achieved ISO 9001:2015 accreditation with no non-conformances, and took the opportunity to thank his equipment, material and process suppliers. “The support and interest is humbling, encouraging and appreciated. For Mutracx to continue to be successful the whole supply chain needs to understand the needs of the industry change. Disruptive technologies will disrupt the status quo and bring new challenges to the supply chain and the organisation. Default standards such as IPC are outdated and new supply specifications are needed. Open minds and collaboration with suppliers and customer will make change possible.”
Bill Wilkie wrapped up the seminar, thanking the presenters for their contributions and delegates for their attention. Especial thanks went to MacDermid Enthone Electronic Solutions for their generous sponsorship of the event, which brought together a substantial cross-section of the UK PCB industry for another significant learning and networking opportunity.
Page 2 of 2Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Hands-On Demos Now Available for Apollo Seiko’s EF and AF Selective Soldering Lines
06/30/2025 | Apollo SeikoApollo Seiko, a leading innovator in soldering technology, is excited to spotlight its expanded lineup of EF and AF Series Selective Soldering Systems, now available for live demonstrations in its newly dedicated demo room.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Fresh PCB Concepts: Assembly Challenges with Micro Components and Standard Solder Mask Practices
06/26/2025 | Team NCAB -- Column: Fresh PCB ConceptsMicro components have redefined what is possible in PCB design. With package sizes like 01005 and 0201 becoming more common in high-density layouts, designers are now expected to pack more performance into smaller spaces than ever before. While these advancements support miniaturization and functionality, they introduce new assembly challenges, particularly with traditional solder mask and legend application processes.
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.