Researchers Design Soft, Flexible Origami-Inspired Robot
September 28, 2017 | Case Western Reserve UniversityEstimated reading time: 2 minutes

A Case Western Reserve University researcher has turned the origami she enjoyed as a child into a patent-pending soft robot that may one day be used on an assembly line, in surgery or even outer space.
Kiju Lee, the Nord Distinguished Assistant Professor of Mechanical and Aerospace Engineering, and her lab have moved from paper robots to 3-D-printed models that bend, contract, extend and twist. This novel mechanism is called TWISTER (TWISted TowEr Robot).
TWISTER was inspired by an origami twisted tower originally designed by Japanese artist Mihoko Tachibana, which uses multiple origami segments to form a tower structure. This origami design was then reinvented for various potential applications in robotics and manufacturing.
In her earlier work using paper-folded structures, Lee’s team added three small versions of the towers to one end of the larger tower and manipulated them to grasp like three opposing fingers. While picking up and moving eggs and ripe fruit, Lee’s team found that when excessive force was applied, the fingers absorbed the extra force by distributing it and deforming.
That quality, the researchers say, demonstrates the design’s potential for manipulating all kinds of fragile objects without requiring force-based sensing and interacting with humans, without safety concerns.
Recently, Lee successfully converted the TWISTER designs into 3-D printable models. This work enabled fabrication of complex origami-inspired designs via 3-D printing.
“Among the possibilities for this robot are fragile-object manipulation and direct human-robot interaction, because these robots are soft and safe,” said Lee, who will present her latest study at the IEEE/RSJ International Conference on Intelligent Robots and Systems in Vancouver today (Sept. 27).
“TWISTER is very different from rigid body robots,” she said.
Kiju Lee and her lab developed TWISTER, a soft robot inspired by origami art.
Photo credit: Russell Lee
TWISTER is made from multiple layers of regular polygons—triangles, hexagons or octagons, forming a tube-like shape of a tower.
Lee used cable-based actuation to control the robot, while different approaches, such as using Shape-Memory-Alloys, are also being explored. The motions can make a tower lying on its side crawl.
For safety reasons, hard-bodied robots are typically separated from people in manufacturing processes, Lee said. “Because this robot can be made with soft materials,” she said, “it could be safe to use on an assembly line right next to people.”
Lee and physicians have also been discussing ways to miniaturize the robot to insert in the body for minimally invasive surgeries.
“Laproscopic surgery often requires some rigid pieces, and movement to control them from the outside causes stress on the tissues,” Lee said.
She’s also been exploring space robotic applications, particularly for a space arm.
“To put anything into space, volume and weight are critical, because of the cost of rocket transport,” Lee said. “This robot is fully collapsible and, compared to a rigid arm, light and compact.”
Current and former undergraduate researchers Yanzhou Wang and Evan Vander Hoff, and PhD students Donghwa Jeong and Tao Liu contributed to this project.
Suggested Items
Moog Announces Acquisition of COTSWORKS
07/07/2025 | BUSINESS WIREMoog Inc., a worldwide designer, manufacturer and systems integrator of high-performance precision motion and fluid controls and control systems, announced the acquisition of COTSWORKS Inc., an aerospace and defense fiber optics transceiver component manufacturer, for a purchase price of $63 million.
S&K Aerospace Awarded Major Contract Under DLA Maritime Acquisition Advancement Program
07/02/2025 | BUSINESS WIRES&K Aerospace, LLC has been awarded a significant contract under the Defense Logistics Agency’s (DLA) Maritime Acquisition Advancement Program, managed by the U.S. Naval Supply Command - Weapon Systems Support (NAVSUP WSS) in Mechanicsburg, PA.
Green Circuits to Exhibit Full-Service Electronics Manufacturing Solutions at 2025 SMD Symposium
07/02/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce its participation in the 2025 SMD Symposium, taking place August 5-7 at the Von Braun Center in Huntsville, Alabama.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/27/2025 | Nolan Johnson, I-Connect007While news outside our industry keeps our attention occupied, the big news inside the industry is the rechristening of IPC as the Global Electronics Association. My must-reads begins with Marcy LaRont’s exclusive and informative interview with Dr. John Mitchell, president and CEO of the Global Electronics Association. For designers, have we finally reached the point in time where autorouters will fulfill their potential?
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.