New Ultralight Silver Nanowire Aerogel is Boon for Energy and Electronics Industries
October 6, 2017 | LLNLEstimated reading time: 1 minute

A new ultralight silver nanowire aerogel could be a boost to the energy and electronics industries.
Metal foams (or porous metals) represent a new class of materials with unique properties including lightweight, high surface area, high electrical conductivity and low thermal conductivity. Lawrence Livermore National Laboratory (LLNL) researchers have created a new ultralight silver nanowire aerogel that could lead to advances in fuel cells, energy storage, medical devices and electronics.
It is so light that it could lay on a fragile rosebud without the flower wilting.
But conventional methods of creating these foams require demanding manufacturing conditions including high temperature, high pressure and/or strict oxygen exclusion. In some cases, they are not scalable for mass production. Using nanowires as building blocks, the fabrication of silver aerogels doesn't have these limitations. In addition, the new silver aerogels have tunable densities, controlled pore structures, improved electrical conductivity and mechanical properties, making it attractive for practical applications.
"The high porosity and excellent mechanical/electrical properties of these silver nanowire aerogels may lead to enhanced device performance and open up new possibilities in fuel cells, energy storage, medical devices, catalysis and sensors," said Fang Qian, lead author of the paper in the most recent online edition of Nano Letters, (link is external)which also will be featured as the journal cover in the December issue.
The new method for fabricating these ultralight, conductive silver aerogels utilizes assemblies of LLNL-made silver nanowires, which can result in low-density monoliths (4.8 mg/cc) that can conform to various geometries. Silver nanowire building blocks were prepared by polyol synthesis and purified by selective precipitation. Silver aerogels were produced by freeze-casting nanowire aqueous suspensions followed by thermal sintering to weld the nanowire junctions.
"We are able to make these ultra-lightweight silver aerogels because the quality of our silver nanowires is extremely high," said Yong Han, principal investigator of the project. "The custom feedstock synthesis capabilities we have at the Lab allow us to create such materials with demanding specifications for diverse application."
Other Livermore researchers on the project include Pui Ching Lan, Megan Freyman, Wen Chen, Tammy Olson, Cheng Zhu, Marcus Worsley, Eric Duoss, Chris Spadaccini and Ted Baumann.
Suggested Items
Almonty Joins DARPA Funded Critical Minerals Forum
05/20/2025 | BUSINESS WIREAlmonty Industries Inc., a leading global producer of tungsten concentrate, announced that, upon being invited to join, it has attained membership in the Critical Minerals Forum (CMF), a US Defense Advanced Research Projects Agency (DARPA)-funded not-for-profit trade association dedicated to building resilient and diversified critical minerals supply chains.
Sanmina Announces Acquisition of Data Center Infrastructure Manufacturing Business of ZT Systems from AMD
05/19/2025 | PRNewswireSanmina Corporation, a leading integrated manufacturing solutions company, announced that it has entered into a definitive agreement to acquire the data center infrastructure manufacturing business of ZT Systems, a leading provider of Cloud and AI infrastructure to the world's largest hyperscalers, from AMD.
SEMI North America Advisory Board Welcomes New Member From SACHEM
05/15/2025 | SEMISEMI announced the election of a new member to the SEMI North America Advisory Board (NAAB), Rosemary Steen Hoffman, Chief Executive Officer, SACHEM, Inc., a premier supplier of high-purity, precision-based chemistries.
OSI Systems Receives $7 Million Order for Medical Technology Components
05/13/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Optoelectronics and Manufacturing division has been awarded an order for approximately $7 million to supply essential components for a leading healthcare innovator specializing in patient diagnostic and care applications.
SMC Korea 2025 to Spotlight Next-Generation Memory and Materials Innovation amid AI Boom
05/13/2025 | SEMIThe Strategic Materials Conference (SMC) Korea 2025 is set to convene on May 14 at the Suwon Convention Center in Gyeonggi-do, South Korea, bringing together leading experts and innovators to highlight the critical role of materials innovation in addressing the performance, efficiency, and scalability requirements of AI-enabled semiconductor devices.