Biodegradable Electronics
October 13, 2017 | Fraunhofer FEPEstimated reading time: 1 minute

Under the direction of the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, an in-house Fraunhofer project for development of biodegradable electronics was begun last year. The Fraunhofer Institute for Electronic Nano Systems ENAS, the Fraunhofer Institute for Biomedical Engineering IBMT, the Fraunhofer Institute for Silicate Research ISC, and the Fraunhofer Resource Recycling and Strategy Project Group IWKS are working together on the project.
Electronic components that are completely broken down in a biological environment after a pre-defined operating life open up novel applications as well as ways for reducing their ecological footprint.
One enabling technology for such components is the manufacture of biodegradable conductive traces on biodegradable substrates using vacuum technologies. This technology was developed by Fraunhofer FEP.
A novel application area for these innovative electronic components for example is in the field of active medical implants that after expiration of their operating life are resorbed by tissue, thereby sparing the patient a second surgical intervention.
The Fraunhofer Gesellschaft e. V. is now funding the "bioElektron - Biodegradable Electronics for Active Implants" project through its in-house program (funding No. MAVO B31 301). The goal of the project is the development of essential components for biodegradable electronic parts that can be employed for example in an implant.
This includes in particular:
- biodegradable conductor structures
- biodegradable electrodes for collecting electrical signals or delivering electrical stimulation
- biodegradable thin-film transistors and circuitry
- biodegradable barrier coatings as moisture and gas barriers, and electrical insulation layers
These elements will be monolithically integrated into a flexible thin-film device.
Conductor structures and organic thin-film transistors are being developed at Fraunhofer FEP using vacuum technology. Deposition of magnesium via thermal evaporation under high vacuum conditions is being used as an enabling technology for this purpose. Magnesium is known for being a biodegradable and biologically compatible metal that is already employed in clinical environments as an absorbable implant material. The challenge consists of depositing this metal upon biodegradable polymer films that magnesium does not adhere sufficiently to under normal process control. By suitably pre-treating the substrates using a combination of drying, plasma treatment, and utilization of seed layers, finely structured high-quality conductor structures were able to be produced.
Suggested Items
IIT Kharagpur, A*STAR Singapore Forge Strategic Partnership to Advance Semiconductor Innovation in Asia
06/03/2025 | IIT KharagpurIn a landmark move to foster global collaboration in semiconductor research and talent development, IIT Kharagpur has signed a Memorandum of Understanding (MoU) with the Institute of Microelectronics (IME) under Singapore’s Agency for Science, Technology and Research (A*STAR).
STARTEAM GLOBAL Unveils Innovative Additive Solder Mask Process
06/02/2025 | STARTEAM GLOBALSTARTEAM GLOBAL, a leading PCB manufacturer, has introduced a revolutionary additive solder mask process at its Flero STARTEAM (FST) factory in Italy, leveraging digital inkjet technology to enhance production efficiency and sustainability.
Strategic Materials Conference 2025 Spotlights Materials Innovation to Advance Semiconductor Manufacturing
06/02/2025 | SEMIWith materials innovation at the core of next-generation semiconductor technologies, the Strategic Materials Conference (SMC) 2025 brings together top executives and technology leaders from the semiconductor manufacturing industry for exclusive insights into the latest trends and advancements.
CACI to Deliver Additional SIGINT and EW Technology for U.S. Army Soldiers with TLS BCT Manpack
06/02/2025 | CACI International Inc.CACI International Inc announced that a contract modification has been awarded by the U.S. Army to continue procurement, training, and fielding for the Terrestrial Layer System Brigade Combat Team Manpack (TLS BCT Manpack).
Hon Hai Research Institute Partners with Taiwan Academic Research Institute and KAUST to Participate in CLEO 2025
05/30/2025 | FoxconnThe research team of the Semiconductor Division of Hon Hai Research Institute, together with the research teams of National Taiwan University and King Abdullah University of Science and Technology in Saudi Arabia, has successfully made breakthroughs in multi-wavelength μ -LED technology to achieve high-speed visible light communication and optical interconnection between chips.