Organic/Inorganic Sulfur May Be Key for Safe Rechargeable Lithium Batteries
October 13, 2017 | Pennsylvania State UniversityEstimated reading time: 1 minute

We have come a long way from leaky sulfur-acid automobile batteries, but modern lithium batteries still have some down sides. Now a team of Penn State engineers have a different type of lithium sulfur battery that could be more efficient, less expensive and safer.
"We demonstrated this method in a coin battery," said Donghai Wang, associate professor of mechanical engineering. "But, I think it could eventually become big enough for cellphones, drones and even bigger for electric vehicles."
Lithium sulfur batteries should be a promising candidate for the next generation of rechargeable batteries, but they are not without problems. For lithium, the efficiency in which charge transfers is low, and lithium batteries tend to grow dendrites — thin branching crystals — when charging that do not disappear when discharged.
The researchers examined a self-formed, flexible hybrid solid-electrolyte interphase layer that is deposited by both organosulfides and organopolysulfides with inorganic lithium salts. The researchers report in today's (Oct. 11) issue of Nature Communications that the organic sulfur compounds act as plasticizers in the interphase layer and improve the mechanical flexibility and toughness of the layer. The interphase layer allows the lithium to deposit without growing dendrites. The Coulombic efficiency is about 99 percent over 400 recharging discharging cycles.
"We need some kind of barrier on the lithium in a lithium metal battery, or it reacts with everything," said Wang.
Sulfur is a good choice because it is inexpensive and provides the battery with high-charge capacity, higher-energy density so a lithium sulfur battery has more energy. However, a lithium sulfur battery forms an inorganic coating in the battery that is brittle and cannot tolerate changes in volume. The inorganic sulfur interface cannot sustain high energy. In a lithium sulfur battery, the electrolyte dries up and the bulk lithium corrodes. The lithium dendrites that form can create short circuits and other safety hazards.
"Potentially we can double the energy density of conventional DC batteries using lithium sulfur batteries with this hybrid organosulfide/organopolysulfide interface," said Wang.
They also can create a safer, more reliable battery.
To create their battery the researchers used an ether-based electrolyte with sulfur-containing polymer additives. The battery uses a sulfur-infused carbon cathode and a lithium anode. The organic sulfur in the electrolyte self-forms the interphase layers.
The researchers report that they demonstrate a lithium-sulfur battery exhibiting a long cycling life — 1000 cycles — and good capacity retention.
Suggested Items
Global SiC Substrate Revenue Declines 9% in 2024; Long-Term Demand Remains Strong as 8-Inch Roadmap Gains Momentum
05/12/2025 | TrendForceTrendForce’s latest research shows that weakening demand in the automotive and industrial sectors has slowed shipment growth for SiC substrates in 2024.
SAIC Awarded New $55 Million Mission Integration Contract From Space Development Agency
05/05/2025 | SAICScience Applications International Corp. has been awarded the Proliferated Warfighter Space Architecture (PWSA) Tranche 3 Program Integration (T3PI) contract from the Space Development Agency (SDA).
Driving Innovation: Registration in PCB Production Throughout the Process
05/06/2025 | Simon Khesin -- Column: Driving InnovationPCB manufacturing is a fascinating industry where multiple disciplines—chemical, mechanical, and optical processes—intersect. Each field plays a crucial role, and missing even one step can significantly impact production and yield. In the realm of mechanical and optical processes, one of the most critical aspects influencing the final result—especially in complex PCB designs—is registration.
OKI Develops 124-Layer PCB Technology for Next-Generation AI Semiconductor Testing Equipment
04/28/2025 | BUSINESS WIREOKI Circuit Technology, the OKI Group printed circuit board (PCB) company, has successfully developed 124-layer PCB technology for wafer inspection equipment designed for next-generation high bandwidth memory, such as HBM mounted on AI semiconductors.
Tandem Panel Shipments to Jump Again to 36% in 2026
04/25/2025 | BUSINESS WIREAccording to recent display industry research from Omdia, tandem RGB penetration into the OLED tablet and notebook panel markets surged from almost zero to more than 30% in 2024.