A Sputtering Step Closer to Cheaper Solar Cells
October 19, 2017 | A*STAREstimated reading time: 2 minutes
In the search for alternatives to silicon-based solar cells, A*STAR researchers are investigating a new material that is cheaper and easier to make, and could lead to better performing solar cells (Scientific Reports, "Impact of molybdenum out diffusion and interface quality on the performance of sputter grown CZTS based solar cells").
Silicon solar cells are highly efficient, converting up to 25 per cent of sunlight into electricity, but fabricating the silicon wafers, which need to be around 300 microns thick to absorb all the sunlight that falls on them, is an expensive process that requires temperatures of around 1,200 degrees Celsius.
A cheaper alternative to silicon is cadmium telluride; however, it is highly toxic and known to cause cancer. This spurred Goutam Dalapati and colleagues from the A*STAR Institute of Materials Research & Engineering to investigate a copper-zinc-tin-sulfide (CZTS) compound, which offers the optical and electrical properties required in solar cells, but is made from non-toxic, widely available materials that are cheaper than silicon to process.
“CZTS is a semiconducting compound with a higher absorption coefficient than silicon,” says Dalapati, “so it’s able to absorb more visible light and produce more electricity than silicon, and can be used for very large-scale applications, like roofs and solar farms.”
Solar cells made from CZTS have potential for up to 30 per cent efficiency, but require high-quality, thin films of CZTS with no impurities, and a suitable material for the ‘buffer’ or interface layer that sits underneath the CZTS, helping to collect electrical charge.
A technique called quaternary sputtering was used to grow thin films of CZTS, where a single target made from CZTS was used as a source for depositing the film. This method offers several advantages over other deposition methods, including excellent uniformity over large areas and reduced reliance on toxic precursors. The researchers then investigated the effect of sulfurization temperature on the formation of a molybdenum sulfide (MoSx) interfacial layer.
“The composition and structural properties of the CZTS layer depend on the deposition process and the sulfurization,” explains Dalapati. “By using a single-step sputtering target we were able to produce a thin film with a uniform composition and smooth surface, which limits the formation of defects, and is a highly reproducible process.”
The researchers found that the amount of molybdenum lost, referred to as out-diffusing, during the MoSx layer formation varied significantly with changes in sulfurization temperature, and that the overall efficiency of the solar cell was improved by nearly five times when the sulfurization temperature was raised from 500 to 600 degrees Celsius.
“We achieved a solar efficiency of nearly five per cent, and are aiming for around 15 per cent by investigating a suitable buffer and interface layer,” says Dalapati.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.