Nanoelectronics Breakthrough Could Lead to More Efficient Quantum Devices
October 19, 2017 | CONCORDIA UNIVERSITYEstimated reading time: 1 minute

Researchers from Concordia have made a breakthrough that could help your electronic devices get even smarter. Champagne is pleased with the reception the research has garnered. “We were thrilled when our paper was accepted by Nature Communications because of the respect the journal has in the field,” he says.
Champagne, the study’s principal investigator, is also chair of Concordia’s Department of Physics and the Concordia University Research Chair in Nanoelectronics and Quantum Materials.
Nature Communications is an open access, multidisciplinary journal dedicated to publishing research in biology, physics, chemistry and earth sciences. “The journal is known to publish advances of significance within each area,” says Champagne.
The quantum nature of electrons
McRae, the paper’s lead author, explains the research. “Our study sheds light on problems engineers face when building molecular nanoelectronics, and how they might be able to overcome them by harnessing the quantum nature of electrons,” he says.
“We have shown experimentally that we can control whether or not positively and negatively charged particles behave the same way in very short carbon nanotube transistors. In particular, we have shown that in some devices of about 500 atoms long, the positive charges are more confined and act more like particles, while the negative charges are less well confined and act more like waves.”
These results suggest new engineering possibilities. “This means that we can take advantage of the quantum nature of electrons to store information,” says McRae.
Maximizing the differences between the way that positive and negative charges behave could lead to a new generation of two-in-one quantum electronic devices, he explains. The discovery could have applications in quantum computing, radiation sensing and transistor electronics.
This, in turn, could eventually lead to smarter and more efficient consumer electronics.
Ultra-short quantum transistors
“The most exciting implications are for building quantum circuits with single devices that can either store or pass quantum information along with the flick of a switch,” says McRae.
“Our study also shows that we can build devices with dual capabilities, which could be useful in building smaller electronics and packing things in more tightly. In addition, these ultra-short nanotube transistors could be used as tools to study the interplay between electronics, magnetism, mechanics and optics, at the quantum level.”
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.