Binghamton Scientists Create Most Powerful Micro-Scale Bio-Solar Cell Yet
October 23, 2017 | Binghamton UniversityEstimated reading time: 1 minute

Researchers at Binghamton University have created a micro-scale biological solar cell that generates a higher power density for longer than any existing cell of its kind.
A microfluidic lab-on-a-chip system that generates its own power is essential for stand-alone, independent, self-sustainable point-of-care diagnostic devices to work in limited-resource and remote regions, said Electrical and Computer Science Assistant Professor Seokheun Choi. Miniaturized biological solar cells (or micro-BSCs) can be the most suitable power source for those applications because the technique resembles the earth’s natural ecosystem.
“Micro-BSCs can continuously generate electricity from microbial photosynthetic and respiratory activities over day-night cycles, offering a clean and renewable power source with self-sustaining potential,” said Choi. “However, the promise of this technology has not been translated into practical applications because of its relatively low power and current short lifetimes.”
Choi and PhD candidate Lin Liu created a microscale microfluidic biological solar cell that can attain high electrical power and long-term operational capability, which will provide a practical and sustainable power supply for lab-on-a-chip applications. The bio-solar cell generated the highest power density for the longest time among any existing micro-scale bio-solar cells.
“The device will release biological photo-energy conversion technology from its restriction to conceptual research and advance its translational potential toward practical and sustainable power applications for point-of-care diagnostics to work independently and self-sustainably in limited-resource and remote regions,” added Choi.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.
Flexible Circuit Technologies to Host Free Flex Heater Webinar
08/18/2025 | Flexible Circuit TechnologiesGlobal Supplier of flexible circuits, flex design services, and assembly/box-build services, Flexible Circuit Technology will host their latest webinar, "Thermal Precision Meets Flexibility: The Technology Behind Heater Circuits" on Tuesday, August 26th, 2025 at 11 AM EDT.
Nordson Corporation Announces Earnings Release and Webcast for Third Quarter Fiscal Year 2025
07/31/2025 | Nordson CorporationNordson Corporation today announced it will release third quarter fiscal year 2025 earnings on August 20, 2025, after the close of the market.
Technica USA Welcomes Bill Dodd of Essemtec to the Bay Area
07/28/2025 | Technica USATechnica USA was pleased to welcome the good news regarding Essemtec’s decision to relocate Bill Dodd, Applications Engineer, from Boston to the Bay Area.
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.