Liquid Metal Breakthrough Ushers New Wave of Electronics
October 25, 2017 | RMIT UniversityEstimated reading time: 2 minutes

RMIT researchers have used liquid metal to create two-dimensional materials no thicker than a few atoms that have never before been seen in nature.
The incredible breakthrough will not only revolutionise the way we do chemistry but could be applied to enhance data storage and make faster electronics. The “once-in-a-decade” discovery has been published in Science.
The researchers dissolve metals in liquid metal to create very thin oxide layers, which previously did not exist as layered structures and which are easily peeled away.
Once extracted, these oxide layers can be used as transistor components in modern electronics. The thinner the oxide layer, the faster the electronics are. Thinner oxide layers also mean the electronics need less power. Among other things, oxide layers are used to make the touch screens on smart phones.
This image of a liquid metal "slug" and its clear atom-thick "trail" shows the breakthrough in action. When dissolved in a liquid metal core, certain metals leave behind this clear layer of their oxide, which is no thicker than a few atoms and can be peeled away by touching or rolling.
The research is led by Professor Kourosh Kalantar-zadeh and Dr Torben Daeneke from RMIT’s School of Engineering, who with students have been experimenting with the method for the last 18 months.
“When you write with a pencil, the graphite leaves very thin flakes called graphene, that can be easily extracted because they are naturally occurring layered structures,” said Daeneke. “But what happens if these materials don’t exist naturally?
“Here we found an extraordinary, yet very simple method to create atomically thin flakes of materials that don't naturally exist as layered structures.
“We use non-toxic alloys of gallium (a metal similar to aluminium) as a reaction medium. This covers the surface of the liquid metal with atomically thin oxide layers of the added metal rather than the naturally occurring gallium oxide.
“This oxide layer can then be exfoliated by simply touching the liquid metal with a smooth surface. Larger quantities of these atomically thin layers can be produced by injecting air into the liquid metal, in a process that is similar to frothing milk when making a cappuccino.”
It’s a process so cheap and simple that it could be done on a kitchen stove by a non-scientist.
“I could give these instructions to my mum, and she would be able to do this at home,” Daeneke said.
Professor Kourosh Kalantar-zadeh said that the discovery now places previously unseen thin oxide materials into everyday reach, with profound implications for future technologies.
“We predict that the developed technology applies to approximately one-third of the periodic table. Many of these atomically thin oxides are semiconducting or dielectric materials.
“Semiconducting and dielectric components are the foundation of today’s electronic and optical devices. Working with atomically thin components is expected to lead to better, more energy efficient electronics. This technological capability has never been accessible before.”
The breakthrough could also be applied to catalysis, the basis of the modern chemical industry, reshaping how we make all chemical products including medicines, fertilisers and plastics.
The research is funded by the Australian Research Council Centre for Future Low-Energy Electronics Technologies (FLEET).
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
TTCI and The Training Connection Strengthen Electronics Manufacturing with Test Services and Training at PCB West 2025
09/16/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a trusted provider of electronic test and manufacturing solutions, and The Training Connection LLC (TTC-LLC) will exhibit at PCB West 2025, taking place Wednesday, October 1, 2025, at the Santa Clara Convention Center in California. Visitors are invited to Booth 113 to explore the companies’ complementary expertise in test engineering services and workforce development for the electronics industry.
Beyond the Board: What Companies Need to Know Before Entering the MilAero PCB Market
09/16/2025 | Jesse Vaughan -- Column: Beyond the BoardThe MilAero electronics supply chain offers opportunities for manufacturers that are both prestigious and strategically important. Serving prime contractors and Tier-1 suppliers can mean long-term program stability and the satisfaction of contributing to national security. At the same time, this sector is unlike commercial electronics in almost every respect. Success requires more than technical capabilities, it requires patience, preparation, attention to detail, and a clear understanding of how the business model differs.
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Global Interposer Market to Surge Nearly Fivefold by 2034
09/15/2025 | I-Connect007 Editorial TeamRevenue for the global interposer market is projected to climb from $471 million in 2025 to more than $2.3 billion by 2034, according to a new report from Business Research Insights. The growth represents a CAGR of nearly 20 percent over the forecast period.