Data Centres and Telecommunication Applications Drive Opportunities for Advanced Photonic Systems
November 1, 2017 | Frost & SullivanEstimated reading time: 2 minutes

The need for high-speed data transmission and increased data traffic in cloud computing have enabled convergence of complementary metal-oxide semiconductors (CMOS) technology, three-dimensional (ED) integration technology, and fibre-optic communication technology to create photonic integrated circuits. In the near future, by leveraging CMOS technology, the silicon medium has the potential to be fabricated and manufactured on a much larger scale. Some of the most disruptive innovations in silicon photonics are high-speed Ethernet switches, interconnects, photo detectors and transceivers, which enable high-bandwidth communications at a lower cost through low form factor, low power generation and increased performance integration into a single device.
Frost & Sullivan’s new analysis of “Innovations in Silicon Photonics” finds that the North American region has seen significant growth in silicon photonic research and development (R&D) due to the location of hyper-scale data centre facilities, while Asia-Pacific has witnessed investments to improve methods for large-scale manufacturing of silicon photonic components and circuits. The study analyses the current status of the silicon photonics industry, including factors that influence development and adoption. Innovation hotspots, key developers, growth opportunities, patents, funding trends, and applications enabled by silicon photonics are also discussed.
“Currently, innovations in silicon photonics are driven by the convergence of optical and electronic capabilities on a single chip. The innovations are highly application-specific, focusing on high-speed optical communications,” said Frost & Sullivan TechVision Research Analyst Naveen Kannan. “Further research and investments are looking towards developing next-generation, high-speed quantum computing. Researchers have transformed high-speed computing by achieving quantum entanglement using two quantum bits in a silicon chip. This will enable high-speed database search, molecular simulation, and drug designing.”
Wide-scale adoption is expected in various industries, such as data centres, cloud computing, biomedical and automotive. Building low-power interconnects that use light to transfer data rapidly is the main application area within data centres. In the biomedical industry, silicon photonics will enable the creation of highly sensitive biosensors for diagnostic applications.
“Photonic integrated circuits require the designing of photonic components simultaneously with electrical and electronic components. This can be challenging,” noted Naveen Kannan. “Players can overcome this challenge by offering services in terms of developing innovative photonic integrated circuit design, product prototyping, and testing methodology as per customer requirements.”
Innovations in Silicon Photonics is part of Frost & Sullivan’s TechVision Microelectronics subscription program.
About TechVision
Frost & Sullivan's global TechVision practice is focused on innovation, disruption and convergence, and provides a variety of technology-based alerts, newsletters and research services as well as growth consulting services. Its premier offering, the TechVision program, identifies and evaluates the most valuable emerging and disruptive technologies enabling products with near-term potential. A unique feature of the TechVision program is an annual selection of 50 technologies that can generate convergence scenarios, possibly disrupt the innovation landscape, and drive transformational growth.
Suggested Items
Nordson Electronics Solutions Develops Panel-level Packaging Solution for Powertech Technology, Inc. That Achieves Yields Greater Than 99% for Underfilling During Semiconductor Manufacturing
06/11/2025 | Nordson Electronics SolutionsNordson Electronics Solutions, a global leader in reliable electronics manufacturing technologies, has developed several solutions for panel-level packaging (PLP) during semiconductor manufacturing. In one particular case, Nordson’s customer, Powertech Technology, Inc. (PTI) saw underfill yields improve to greater than 99% as they plan to transition from wafers to panels in their manufacturing operations. edwd
DuPont/Qnity Innovators in Semiconductor Materials Named 2025 Heroes of Chemistry
06/10/2025 | DuPontDuPont today announced that 13 of its current and former scientists and engineers have been named 2025 Heroes of Chemistry by the American Chemical Society (ACS) for an innovative program that progressed semiconductor lithography.
Zhen Ding Promotes Digital Transformation and Embraces AI Business Opportunities
06/06/2025 | Zhen Ding TechnologyOn May 27, 2025, General Manager Chen-Fu Chien of Zhen Ding Technology Group was invited to attend the "2025 Two Thousand Forum" held by The CommonWealth Magazine.
Leidos Using Quantum Technology to Thwart GPS Jamming
06/05/2025 | PRNewswireSusceptibility to jamming is a significant military vulnerability of the Global Positioning System (GPS) signal. Through a Defense Innovation Unit contract, Leidos is developing an alternative navigation technology that measures variations in the Earth's magnetic field and harnesses the quantum properties of nitrogen in diamonds.
Growing Demand for Mid-Size Displays Opens New Opportunities for FMM-Free OLED Technologies
06/05/2025 | TrendForceTrendForce’s latest report on the display industry reveals that OLED technology—valued for its self-emissive structure, high contrast ratio, and lightweight design—continues to expand its market presence, primarily in small-size applications such as smartphones.