Living Cell Culture Learning Process to be Implemented
November 14, 2017 | Lobachevsky UniversityEstimated reading time: 2 minutes
Lobachevsky University scientists under the supervision of Alexey Mikhailov, Head of the UNN PTRI Laboratory of Thin Film Physics and Technology, are working to develop an adaptive neural interface that combines, on the one hand, a living culture, and on the other, a neural network based on memristors. This project is one if the first attempts to combine living biological culture with a bio-like neural network based on memristors. Memristor neural networks will be linked to a multi-electrode system for recording and stimulating the bioelectrical activity of a neuron culture that performs the function of analyzing and classifying the network dynamics of living cells.
Compared with some international competitors who set the task of "connecting the living world and artificial architectures" (for example, the RAMP project), the advantage of the UNN project is that highly skilled experts in various fields (including physics and technology of memristive nanostructures, neural network modeling, electronic circuit design, neurodynamics and neurobiology) are concentrated both in terms of their location and organization within the same university.
According to Alexey Mikhailov, UNN scientists are now working to create a neural network prototype based on memristors, which is similar to a biological nervous system with regard to its internal structure and functionality.
"Due to the locality of the memristive effect (such phenomena occur at the nanoscale) and the use of modern standard microelectronic technologies, it will be possible to obtain a large number of neurons and synapses on a single chip. These are our long-time prospects for the future. It means, in fact, that one can "grow" the human brain on a chip. At present, we are doing something on a simpler scale: we are trying to create hybrid electronic circuits where some functions are implemented on the basis of traditional electronics (transistors), and some new functions that are difficult to implement in hardware are realized on the basis of memristors", said Alexey Mikhailov.
Currently, researchers are exploring the possibility of constructing a feedback whereby the output signal from the memristor network will be used to stimulate the biological network. Actually, it means that for the first time the process of learning will be realized for a living cell culture. The living culture used by the scientists is an artificially grown neuronal culture of brain cells. In principle, however, one can also use a slice of living tissue.
The aim of the project is to create compact electronic devices based on memristors that reproduce the property of synaptic plasticity and function as part of bio-like neural networks in conjunction with living biological cultures.
The use of hybrid neural networks based on memristors opens up amazing prospects. First, with the help of memristors it will be possible to implement the computing power of modern supercomputers on a single chip. Secondly, it will be possible to create robots that manage an artificially grown neuronal culture. Thirdly, such "brain-like" electronic systems can be used to replace parts of the living nervous system in the event of their damage or disease.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
TTCI and The Training Connection Strengthen Electronics Manufacturing with Test Services and Training at PCB West 2025
09/16/2025 | The Test Connection Inc.The Test Connection Inc. (TTCI), a trusted provider of electronic test and manufacturing solutions, and The Training Connection LLC (TTC-LLC) will exhibit at PCB West 2025, taking place Wednesday, October 1, 2025, at the Santa Clara Convention Center in California. Visitors are invited to Booth 113 to explore the companies’ complementary expertise in test engineering services and workforce development for the electronics industry.
TTM Technologies to Exhibit at the Electronica India 2025 Exhibition in Bengaluru, India
09/16/2025 | Globe NewswireTTM Technologies, Inc., a leading global manufacturer of technology solutions, including mission systems, radio frequency (RF) components, RF microwave/microelectronic assemblies, and quick-turn and technologically advanced printed circuit boards (PCBs), will exhibit at the Electronica India 2025 trade fair, at Hall 3, booth #H41, from September 17-19, 2025, at the Bangalore International Exhibition Centre, Bengaluru, India.
Beyond the Board: What Companies Need to Know Before Entering the MilAero PCB Market
09/16/2025 | Jesse Vaughan -- Column: Beyond the BoardThe MilAero electronics supply chain offers opportunities for manufacturers that are both prestigious and strategically important. Serving prime contractors and Tier-1 suppliers can mean long-term program stability and the satisfaction of contributing to national security. At the same time, this sector is unlike commercial electronics in almost every respect. Success requires more than technical capabilities, it requires patience, preparation, attention to detail, and a clear understanding of how the business model differs.
India’s Aerospace and Defence Engineered for Power, Driven by Electronics
09/16/2025 | Gaurab Majumdar, Global Electronics AssociationWith a defence budget of $82.05 billion (2025–26) and a massive $223 billion earmarked for aerospace and defence spending over the next decade, India is rapidly positioning itself as a major player in the global defence and aerospace market.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.