Skoltech-led Team Sheds Light on How CNT Could Pave Way for Next-Gen Electronics
November 22, 2017 | SkoltechEstimated reading time: 2 minutes

A team of Skoltech scientists, in collaboration with researchers from the IBM Watson Research Center, have shed light on the behavior of electrical contacts in carbon semiconductor nanotubes – a revelation that could pave the way to next-generation electronics.
Carbon is extremely tough and relatively light with unique electronic and optical properties. Since their discovery some 20 years ago, scientists have been actively investigating their myriad potential uses, as well as their unique properties. As an example, carbon nanotubes are known to conduct electricity significantly more efficiently than other materials, such as silicon and copper.
Silicon digital electronics have revolutionized our experience of the world. Silicon microprocessors are found in technologies ranging from mobile phones to jumbo jets. In the past, tech devices were made possible by a reduction in transistor size, but the possibilities of silicon have effectively reached their limit; thus, it is necessary to search for new opportunities to reduce costs and increase performance in electronic devices.
Toward this end, technology giants like IBM are actively investigating their potential to replace silicon in next-generation computers and other electronics. The primary challenge in this regard is contact resistance, which is attributable to the low resistance of nanotube channels.
“Transistor resistance includes both channel and contact resistance. The channel resistance of carbon nanotubes is better than that of silicon, but no one needs transistors made of nanotubes with a long channel, and when the tube size decreases to several tenths of a nanometer, the contact resistance begins to dominate,” said Skoltech Professor Vasili Perebeinos, the study’s lead author.
Semiconductor tubes are used to manufacture transistors. But metal is used for contacts. Metal exerts pressure on the tubes, which comes at the expense of surface tension. Previous research in the field revealed that this pressure is high enough to flatten the tubes.
“In our latest research, we, quite unexpectedly, predicted that semiconductor tubes flattened by a metal contact become metallic. In this case, the contact resistance increases, and does not subsequently decrease. This is due to the breaking of the axial symmetry of the deformed tubes under the metal contact,” Perebeinos said.
The Skoltech-led team’s research has helped elucidate the steps that can be taken to reduce contact resistance. They determined that for purposes of manufacturing transistors, it’s preferable to use tubes with relatively small diameters.
To put this into context, we can imagine a comparable situation in the macro world. Imagine a large pipe instead of a nanotube, and a hammer pounding against the pipe instead of metal exerting pressure. It immediately becomes clear why a diametric reduction would help; it would be easier to flatten a pipe with a large diameter than one with a smaller diameter.
It is also possible to use metals with a lower surface tension; the “hammer blow” in this case would be weaker and the nanotube would not be flatten.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.