Cuprate Materials' Fluctuating Stripes May Be Linked to High-temp Superconductivity
December 1, 2017 | SLAC National Accelerator LaboratoryEstimated reading time: 4 minutes

Scientists at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have shown that copper-based superconductors, or cuprates – the first class of materials found to carry electricity with no loss at relatively high temperatures – contain fluctuating stripes of electron charge and spin that meander like rivulets over rough ground.
Image caption: An animation based on computer simulations shows stripes of electron charge (white atoms) and spin (red and blue atoms) in a copper-based superconducting material. The stripes are zones where electrons either pile up, creating bands of negative charge, or align their spins (arrows) in a particular pattern to create bands of magnetism. A computational study by researchers at SLAC and Stanford shows these stripes are present in a subtle, fluctuating form at high temperatures. The results will help researchers test theories about how stripes may be related to high-temperature superconductivity. (Farrin Abbott/SLAC National Accelerator Laboratory)
The stripes are zones where electrons either pile up, creating bands of negative charge, or align their spins to create bands of magnetism. They were previously known to exist in cuprate superconductors at temperatures near absolute zero, although in this deep chill the stripes did not move around and their exact role in superconductivity – do they boost or squelch it? – has been unclear.
Now the researchers have computationally demonstrated for the first time that these stripes also exist at high temperatures, but they are subtle and fluctuate in a way that could only be discovered through numerical computer simulations of a precision and scale not done before.
“There’s reason to think that stripes of charge and spin may be intimately tied to the emergence of high-temperature superconductivity in these materials, which was discovered 30 years ago but so far is not understood or explained,” said Edwin Huang, a physics graduate student at Stanford and at the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC.
“This discovery of fluctuating stripes in a realistic computer model will give us a way to test the many theories about how stripes are related to superconductivity,” Huang said. “We think our results will be useful for scientists doing experimental studies of these materials, and they’ll also help develop and refine the computational techniques that go hand in hand with theory and experiments to push the field forward.”
The results also apply to other novel materials, said SIMES Director Thomas Devereaux. “Materials that spontaneously develop this sort of non-uniform structure are quite commonplace, including magnets and ferroelectrics,” he said. “It can even be thought of as a signature of ‘quantum’ materials, whose surprising properties are produced by electrons that cooperate in unexpected ways. Our numerical results demonstrate that this phenomenon can generally be related to strong interactions between electron charges and spin.”
Page 1 of 2
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.