Solar Power Advances Possible With New ‘Double-Glazing’ Device
December 8, 2017 | University of WarwickEstimated reading time: 2 minutes

A new ‘double-glazing’ solar power device – which is unlike any existing solar panel and opens up fresh opportunities to develop more advanced photovoltaics – has been invented by University of Warwick researchers.
This unique approach, developed by Dr Gavin Bell and Dr Yorck Ramachers from Warwick’s Department of Physics, uses gas - rather than vacuum - to transport electrical energy,
The device is essentially a thin double-glazed window. The outer pane is transparent and conducts electricity. The inner window is coated with a special material, which acts a source of electrons under illumination by sunlight – this is called a “photocathode”.
The two panes are separated by a safe inert gas, such as argon – exactly as is found in high quality double glazing windows.
When sunlight hits the device, electrons are knocked out of the photocathode and bounce through the gas to the outer pane without being absorbed or lost.
This is totally different to how electrons act in existing solar panels, and opens up the possibility of improving solar power generation methods – whereas improvements in classic photovoltaics are hard to come by.
The electrons are then collected and the electrical energy pumped into the grid. This can be done through a gas-filled gap rather than a vacuum which would be far more cost-effective for any practical device.
Dr Bell and Dr Ramachers re-investigated ideas about the photoelectric effect dating back to Nikola Tesla and Albert Einstein when they considered whether these ideas could be used for modern solar power generation – leading to the development of this new process.
Dr Gavin Bell, from the University of Warwick’s Department of Physics, commented:
“It’s satisfying to find a new twist on ideas dating back to the start of the 20th century, and as a materials physicist it is fascinating to be looking for materials which would operate in an environment so different to standard photocathodes.”
The optimal material for the photosensitive layer still needs to be identified, and the researchers have proposed a range of candidate materials - including thin films of diamond, which would be very robust and long-lasting.
The transparency of the photocathode could be varied, leading to the possibility of tinted windows generating solar power.
The researchers would like the scientific community to think about potential optimal materials:
“We think the materials challenge is really critical here so we wanted to encourage the materials science community to get creative,” said Dr Bell. “Our device is radically different from standard photovoltaics, and can even be adapted for other green technologies such as turning heat directly into electricity, so we hope this work will inspire new advances.”
Suggested Items
Electroninks Acquires Complete UTDots Advanced Materials Nanoinks Portfolio and IP
05/19/2025 | ElectroninksElectroninks, the leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, announced it has officially completed its full acquisition of UTDots products and IP into its portfolio, further expanding its offerings in digital printing for high-performance applications.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
From DuPont to Qnity: A Bold Move in Electronics Materials
05/14/2025 | Marcy LaRont, I-Connect007DuPont has announced the intended spinoff of a public independent electronics company, Qnity, which will serve as a solutions provider to the semiconductor and electronics industries to enhance competitiveness and innovation in advanced computing, smart technologies, and connectivity. In this interview, Jon Kemp, Qnity CEO-elect and current president of DuPont’s Electronics business, shares his insights on the strategic separation from DuPont.
SMC Korea 2025 to Spotlight Next-Generation Memory and Materials Innovation amid AI Boom
05/13/2025 | SEMIThe Strategic Materials Conference (SMC) Korea 2025 is set to convene on May 14 at the Suwon Convention Center in Gyeonggi-do, South Korea, bringing together leading experts and innovators to highlight the critical role of materials innovation in addressing the performance, efficiency, and scalability requirements of AI-enabled semiconductor devices.
SEMI Applauds New Bill to Clarify Tax Credit Eligibility for Critical Semiconductor Suppliers Under U.S. CHIPS Act
05/12/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, announced support of the Strengthening Essential Manufacturing and Industrial Investment Act (SEMI Investment Act), which clarifies that critical materials suppliers to semiconductor manufacturers are eligible for the Advanced Manufacturing Investment Tax Credit (“Section 48D”) created by the United States CHIPS and Science Act.