Metal Printing Offers Low-Cost Way to Make Flexible, Stretchable Electronics
December 29, 2017 | North Carolina State UniversityEstimated reading time: 1 minute

Researchers from North Carolina State University have developed a new technique for directly printing metal circuits, creating flexible, stretchable electronics. The technique can use multiple metals and substrates and is compatible with existing manufacturing systems that employ direct printing technologies.
“Flexible electronics hold promise for use in many fields, but there are significant manufacturing costs involved – which poses a challenge in making them practical for commercial use,” says Jingyan Dong, corresponding author of a paper on the work and an associate professor in NC State’s Edward P. Fitts Department of Industrial & Systems Engineering.
“Our approach should reduce cost and offer an efficient means of producing circuits with high resolution, making them viable for integrating into commercial devices,” Dong says.
The technique uses existing electrohydrodynamic printing technology, which is already used in many manufacturing processes that use functional inks. But instead of ink, Dong’s team uses molten metal alloys with melting points as low as 60 degrees Celsius. The researchers have demonstrated their technique using three different alloys, printing on four different substrates: one glass, one paper and two stretchable polymers.
“This is direct printing,” Dong says. “There is no mask, no etching and no molds, making the process much more straightforward.”
The researchers tested the resilience of the circuits on a polymer substrate and found that the circuit’s conductivity was unaffected even after being bent 1,000 times. The circuits were still electrically stable even when stretched to 70 percent of tensile strain.
The researchers also found that the circuits are capable of “healing” themselves if they are broken by being bent or stretched too far.
“Because of the low melting point, you can simply heat the affected area up to around 70 degrees Celsius and the metal flows back together, repairing the relevant damage,” Dong says.
The researchers demonstrated the functionality of the printing technique by creating a high-density touch sensor, fitting a 400-pixel array into one square centimeter.
“We’ve demonstrated the resilience and functionality of our approach, and we’re open to working with the industry sector to implement the technique in manufacturing wearable sensors or other electronic devices,” Dong says.
Suggested Items
Microsembly Furthers RF Hybrid Manufacturing Services with New Automated Wire Bonding and Die Attach Equipment
05/30/2025 | MicrosemblyMicrosembly, a US-based provider of high-frequency contract manufacturing services, has announced the addition of new state-of-the-art automated and manual wire and ribbon bonders to its advanced RF and microwave assembly, manufacturing, and testing facility.
Kimball Electronics to Open New Medical Manufacturing Facility
05/30/2025 | Kimball ElectronicsKimball Electronics has announced the addition of a 300,000 sq ft manufacturing facility in Indianapolis centered on the medical industry.
GTSMT SMT Production Lines are Transforming Modern Electronics Manufacturing
05/29/2025 | EINPresswire.comGTSMT, a prominent leader in the Surface-Mount Technology (SMT) sector, announced the introduction of cutting-edge innovations designed to tackle the evolving challenges facing the global electronics manufacturing industry.
The French Oil Mill Machinery Company Celebrates 125 Years of Innovation and Manufacturing Leadership
05/28/2025 | The French Oil Mill Machinery CompanyThe French Oil Mill Machinery Company marked its 125th anniversary this week, celebrating a rare legacy of continuous family ownership and manufacturing innovation.
Amtech Electrocircuits’ CEO Jay Patel Launches Petition Advocating for 10% Tax Credit to Support U.S. Electronics Manufacturers
05/28/2025 | Amtech ElectrocircuitsAmtech Electrocircuits, a leading provider of manufacturing solutions, announces that CEO Jay Patel has initiated a petition urging policymakers to implement a 10% tax credit for Original Equipment Manufacturers (OEMs) sourcing from U.S. electronics manufacturers.