One Bad Apple Can Spoil a Robot Swarm
January 2, 2018 | KAUSTEstimated reading time: 2 minutes

Armies of robots already run the world’s largest distribution warehouses. Thousands of robots work in concert to stock, pick, pack and deliver products with unprecedented efficiency and speed.
Image caption: Robots are increasingly common across many applications, including distribution warehouses; thus, researchers are calculating how to keep them operating at peak performance. Kittipong Jirasukhanont / Alamy Stock Photo
These robot ‘swarms’ have incredible potential, but even a single malfunctioning unit can rapidly erode overall performance or lead to unexpected outcomes. KAUST researchers Ying Sun and Fouzi Harrou have helped develop the fastest and most accurate fault-detection system to date to keep robot swarms operating at peak performance.
“The philosophy behind swarm robotics is inspired by animal societies, such as ants and bees,” says Harrou. “Groups of robots can cooperate to perform complex tasks that would be impossible with a single robot, which is very useful in many applications, such as cooperative search and exploration, managing warehouses, delivering products, seeding and harvesting.”
The software used to control the coordinated activity of robot swarms tries to account for the reality that assigned tasks are generally not always going to be executed at the desired performance level due to failures by one or more robots in the swarm. Failures are inevitable when dealing with hundreds or thousands of robots due to external interferences, unexpected collisions between robots, component faults, software bugs and even broken communication links.
It is crucial to be able to detect and identify possible faults or failures in the monitored robotic swarm system as early as possible to maximize operating efficiency and avoid expensive maintenance,” says Sun. The researchers’ fault-detection method starts by deriving performance metrics from relative-position data collected under normal operating conditions and then applies two standard ‘control chart’ methods as commonly used in industrial processes to rapidly test for any deviation from those metrics over time.
“We tested our improved data-based fault-detection strategy by applying it to a simulated swarm of foot-bot robots,” says Harrou. “For all the fault types tested—abrupt faults, drift faults, random walks and complete stop faults—our method resulted in a significant improvement in fault detection compared with existing approaches.”
The key advantages of this approach over other swarm-monitoring techniques is that it does not require a mathematical model of the system, which can be difficult to derive, not does it depend on data transmitted by individual robots, which can be sporadic particularly under a fault scenario. “In future work, we plan to test our method using experimental robot swarm data and apply it to monitoring swarms of flying robots,” says Sun.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Soaring Inference AI Demand Triggers Severe Nearline HDD Shortages; QLC SSD Shipments Poised for Breakout in 2026
09/16/2025 | TrendForceTrendForce’s latest investigations reveal that the massive data volumes generated by AI are straining the global infrastructure of data center storage.
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.