Fast-Moving Electrons Create Current in Organic Solar Cells
January 15, 2018 | Purdue UniversityEstimated reading time: 2 minutes

Researchers at Purdue University have identified the mechanism that allows organic solar cells to create a charge, solving a longstanding puzzle in physics, according to a paper published Friday in the journal Science Advances.
Image caption: An exciton (electron-hole pair) formed at the interface between tetracene molecules (an organic semiconductor) and single-layer WS2 (an inorganic semiconductor). Dissociation of such interfacial excitons is necessary for the function of organic solar cells.
Organic solar cells are built with soft molecules, while inorganic solar cells, often silicon-based, are built with more rigid materials. Silicon cells currently dominate the industry, but they’re expensive and stiff, while organic cells have the potential to be light, flexible and cheap. The drawback is that creating an electric current in organic cells is much more difficult.
To create an electrical current, two particles, one with a negative charge (electron) and one with a positive charge (electron-hole), must separate despite being bound tightly together. These two particles, which together form an exciton, usually require a manmade interface to separate them. The interface draws the electron through an electron acceptor and leaves the hole behind. Even with the interface in place, the electron and hole are still attracted to each other – there’s another mechanism that helps them separate.
“We discovered that this type of electron-hole interface is not one single static state. The electron and the hole can be far apart or close together, and the farther apart they are, the more likely they are to separate,” said Libai Huang, an assistant professor of chemistry in Purdue’s College of Science, who led the research. “When they’re far apart, they’re actually very mobile, and they can move pretty fast. We think that this kind of fast motion between the positive and negative charge is what’s driving separation at these interfaces.”
Organic solar cells are difficult to study because they’re messy – they look like a bowl of spaghetti, said Huang. There are many interfaces to look at and they’re very small.
“It’s really hard to do optical spectroscopy at that length scale. These states also don’t live very long, so you need a time resolution that’s very short,” said Huang. “We developed this tool called ultrafast microscopy in which we combine time and spatial resolution to basically look at processes that happen at fast time scales in very small things.”
Even then, the spatial resolution isn’t good enough, so Huang’s lab created a large, two-dimensional interface to create order in the chaotic arrangement of molecules. The solution to the problem is two-fold, she said: ultrafast microscopy and the interface.
Knowing how excitons separate could help researchers design new interfaces for organic solar cells. It could also mean there are materials to build solar cells with that have yet to be harnessed, said Huang.
Suggested Items
LITEON Technology Reports Consolidated April Sales of NT$13.4 Billion Up 27% YoY
05/09/2025 | LITEON TechnologyLITEON Technology reported its April consolidated revenue of NT$13.4 billion. Thanks to the growth from power management in cloud computing, advanced server, and networking, the revenue is up 27% YoY.
It’s Only Common Sense Mastering the Follow-Up—The Key to Closing More Deals
05/05/2025 | Dan Beaulieu -- Column: It's Only Common SenseThere’s a saying in sales: The fortune is in the follow-up. If there’s one piece of advice every sales professional must take to heart, it’s that following up isn’t optional. Follow-up is an art and science that separates the mediocre from the masterful. Many salespeople give up after the first attempt to reach a potential customer, leaving money on the table. Mastering the follow-up is about strategy, persistence, and adding value. These key elements make follow-ups effective:
KYZEN to Spotlight Stencil Cleaning Solutions at SMTA Oregon
05/02/2025 | KYZEN'KYZEN, the global leader in innovative environmentally friendly cleaning chemistries, will exhibit at the SMTA Oregon Expo & Tech Forum, scheduled to take place on Tuesday, May 20 at the Wingspan Event and Conference Center in Hillsboro, OR. KYZEN’s cleaning expert Jeff Deering will be on-site at the expo providing information about stencil cleaning chemistries, including KYZEN E5631J.
IPC Strengthens Global Leadership Team with Addition of Joe Schneider as Vice President of U.S/Canada
04/25/2025 | IPCIPC, the global electronics association, announces the strategic appointment of Joe Schneider as vice president of U.S./Canada. This newly created executive position underscores the association’s commitment to championing the electronics industry's critical contributions to this region’s innovation and economic growth.
NCAB Acquires 100% of B&B Leiterplattenservice GmbH in Germany
04/23/2025 | NCABNCAB has signed an agreement to acquire 100 percent of B&B Leiterplattenservice GmbH (B&B) headquartered in Mittweida, west of Dresden. The company had net sales of around 150 MSEK in 2024 within the PCB trading with an EBITA exceeding SEK 20 million.