PCB Cooling Strategies, Part 1
January 19, 2018 | Bin Zhou, EDADOCEstimated reading time: 7 minutes
- FR-4 (epoxy fiberglass cloth substrate) has high mechanical and dielectric properties, good heat resistance and moisture resistance, and good machinability. The heat resistance is superior to other substrates, and they can resist delamination and foaming for 150 seconds at a temperature of 288°C. The peel strength of the thermal stress test is also larger, reaching 1.5 N/mm. Its thermal conductivity is about 1.0W/mK. High-Tg FR-4 is even more tolerant to high temperatures. Because of these improved specifications, FR-4 is priced higher than the previous two materials.
- High-density-interconnect (HDI) designs usually use resin-coated copper (RCC), also known as coated copper foil. With increased durability and high anti-peel strength, it is easier to manufacture, and its smooth surface makes it suitable for smaller lines. However, due to the thin copper surface, and the media contains only resin, not glass fiber, so the hardness and heat transfer capacity is not as good as the other substrates.
- Ceramic substrate is a ceramic medium embedded in the copper foil, forming a special CCL. This material has excellent electrical insulation properties and high thermal conductivity, excellent solderability and high adhesion strength. It is generally used in the military and aerospace industries and is more expensive than the other substrates.
- Aluminum substrate is a type of metal CCL with good heat dissipation capabilities. It is generally designed for single-sided boards, mainly used in the design of LED light boards and low-end power boards. It is also used for high-end double-sided boards. There are very few applications for multilayer designs. Aluminum substrates minimize thermal resistance, with excellent thermal conductivity, electrical insulation properties and machining performance. Aluminum substrate voltage can take up to 4,500V and thermal conductivity levels of above 3.0W/mK.
It’s clear that paper-based and composite substrates are no longer suitable for current heat treatment applications, even when considering their lower cost. RCC is limited in HDI use, and its cooling capacity is very weak. Ceramic and aluminum substrates are the most recommended of these materials, with absolute advantages in heat dissipation and heat resistance, but these two materials are expensive and costly and need to be carefully selected based on the condition of their products. That leaves FR-4. While FR-4 does not have the same cooling capacity as ceramic and aluminum substrates, its price is much lower, and its thermal performance is also moderate enough to deal with the general circuit design. It is the most widely used PCB substrate.
After the PCB plate material is selected, the stack-up setup will begin. Each project has its own stack-up, the number of cascades required, and the cooling performance we have been discussing. Before planning the stack-up, we select the substrate with the lowest loss, highest stability, and highest thermal conductivity for good thermal management.
We must consider several things when designing the stack-up. First, we must consider the copper thickness. A thicker copper core layer can improve thermal management. Printed wire has a certain resistance and the passage of current through it will produce heat and cause a voltage drop. The higher the current through the wire, the higher the temperature. If the wire is heated for a long time, the copper foil will fall off due to the decrease of adhesive strength. Increasing the copper thickness can suppress the increase of the junction temperature of the components.
Second, in a multilayered PCB design, the number of power and GND planes will be considered. Heat can be dissipated through a large area of copper foil. Since the heat won’t be concentrated in a small area, the components will not be damaged. During the design process, the electrical interconnection between different layers is achieved by adding a via hole on the PCB board. The multilayer GND planes are connected to enlarge the heat dissipation area, thereby greatly improving the heat dissipation capability on the PCB. Figure 5 depicts a 2mm thick 8-layer laminate as an example: In addition to two outer and two inner layers, we designed four flat plane layers. The three GND layer not only ensure that the signal line aligns to the reference plane, but also maximizes the number of planes to achieve the best flat heat dissipation.
Aluminum substrates are commonly used in single-sided boards, sometimes with double-sided boards, and rarely in multi-layer boards. To improve its cooling capacity, we must increase the thickness of the aluminum because that allows for better heat dissipation. Under normal circumstances, single-layer heat dissipation is better than the double-sided. This is because, as the single-layer aluminum is exposed to air, the heat dissipation area increases, creating a direct heat exchange with the air. On the other hand, double-sided aluminum is caught in the middle by the thermal conductivity of thermal plastic and insulation effects, so the heat cannot be directly distributed. Aluminum laminate stack-up is more fixed, as seen in Figure 6.
Editor's Note: Part 2 of this article will appear in next week’s issue of the Inside Design Newsletter.
Bin Zhou is a senior PCB design engineer for EDADOC. He has 10 years of experience in high-speed design. His responsibilities include high-speed PCB design solutions, HDI, R&D and training.
Page 2 of 2
Suggested Items
Designers Notebook: Addressing Future Challenges for Designers
02/06/2025 | Vern Solberg -- Column: Designer's NotebookThe printed circuit board is and will probably continue to be the base platform for most electronics. With the proliferation of new generations of high I/O, fine-pitch surface mount semiconductor package variations, circuit interconnect is an insignificant factor. Circuit board designers continually face challenges such as component quantity and complexity, limited surface area, and meeting the circuit board’s cost target. The printed circuit design engineer’s prominent position demands the development of efficiently manufacturable products that perform without compromise.
DesignCon 2025, Day 2: It’s All About AI
01/30/2025 | Marcy LaRont, I-Connect007It’s hard to get away from the topic of artificial intelligence, but why would you? It’s everywhere and in everything, and my time attending presentations about AI at DesignCon 2025 was well worth it. The conference’s agenda featured engaging presentations and discussions focused on the technological advancements in AI, big data centers, and memory innovations, emphasizing the critical relationship between processors and circuit boards.
Beyond Design: Electro-optical Circuit Boards
01/22/2025 | Barry Olney -- Column: Beyond DesignPredicting the role of PCB designers in 10 years is a challenge. If only I had a crystal ball. However, we know that as technology progresses, the limitations of copper PCBs are increasingly apparent, particularly regarding speed, bandwidth, and signal integrity. Innovations such as optical interconnects and photonic integrated circuits are setting the stage for the next generation of PCBs, delivering higher performance and efficiency. The future of PCB design will probably incorporate these new technologies to address the challenges of traditional copper-based designs.
Designers Notebook: Impact of Advanced Semiconductor Packaging on PCB Stackup
01/07/2025 | Vern Solberg -- Column: Designer's NotebookTo accommodate new generations of high I/O semiconductor packaging, printed circuit board fabrication technology has had to undergo significant changes in both the process methods and the criteria for base material selection and construction sequence (stackup). Many of the new high-function multi-core semiconductor package families require more terminals than their predecessors, requiring a significantly narrower terminal pitch. Interconnecting these very fine-pitch, high I/O semiconductors to the PCB is made possible by an intermediate element referred to as an interposer.
BOOK EXCERPT: The Printed Circuit Designer’s Guide to... High Performance Materials, Chapter 4
01/02/2025 | I-Connect007In Chapter 4, Michael Gay discusses the two main types of copper foil used for PCB boards today: electrodeposited (ED) foil and rolled annealed (RA) foil. He also explains the pros and cons of each, and provides an update of the latest innovations in copper foil technology.