Taking Control at the Junction
January 22, 2018 | KAUSTEstimated reading time: 2 minutes

Controlling the electronic properties at the interface between materials could help in the quest for improvements in computer memory. KAUST researchers show that varying the atomic composition of boron-nitride-based alloys enables tuning of an important electronic property known as polarization.
When an electric field is applied to a single atom, it shifts the center of mass of the cloud of negatively charged electrons away from the positively charged nucleus it surrounds. In a crystalline solid, these so-called electric dipoles of all atoms combine to create electric polarization.
Some materials exhibit a spontaneous polarization, even without an external electric field. Such materials have potential uses in computer memory, however, this application requires a material system in which the polarization is controllable. Visiting Student Research Program (VSRP) student Kaikai Liu, his supervisor Xiaohang Li and coworkers investigated one approach to polarization engineering at the interface between boron-nitride-based alloys.
Spontaneous polarization is strongly dependent on the structure and composition of the atomic crystal. Some materials, known as piezo electrics, can change polarization when physically deformed.
The KAUST team used software called the Vienna ab initio Simulation Package to investigate the electronic properties of the ternary alloys boron aluminum nitride and boron gallium nitride. They looked at how they change as boron replaces aluminum and gallium atoms, respectively. "We calculated the spontaneous polarization and piezoelectric constants of boron nitride alloys within a newly proposed theoretical framework and the impact of the polarization at junctions of these two materials," says Liu.
The team showed that the spontaneous polarization changes very nonlinearly with increasing boron content; this contradicts previous studies that assume a linear relationship.
The reason for this nonlinearity is attributed to the volume deformation of the alloy's unusual atomic structure, known as wurtzite. The nonlinear change of the piezoelectric polarization is less pronounced, but evident. This arises because of the large difference in atomic spacing between boron nitride and both aluminum nitride and gallium nitride. Furthermore, boron aluminum nitride or boron gallium nitride can become nonpiezoelectric when the boron content is more than 87% and 74%, respectively.
This work shows that a large range of spontaneous and piezoelectric polarization constants could be made available simply by changing the boron content. This could be useful for developing optical and electronic junction devices formed at the interface between conventional nitride semiconductors and either boron aluminum nitride or boron gallium nitride.
"Our next step will be to experimentally test the proposed junctions, which our theory predicts could have much better device performance than current approaches," says Liu.
Suggested Items
Electroninks Acquires Complete UTDots Advanced Materials Nanoinks Portfolio and IP
05/19/2025 | ElectroninksElectroninks, the leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, announced it has officially completed its full acquisition of UTDots products and IP into its portfolio, further expanding its offerings in digital printing for high-performance applications.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
From DuPont to Qnity: A Bold Move in Electronics Materials
05/14/2025 | Marcy LaRont, I-Connect007DuPont has announced the intended spinoff of a public independent electronics company, Qnity, which will serve as a solutions provider to the semiconductor and electronics industries to enhance competitiveness and innovation in advanced computing, smart technologies, and connectivity. In this interview, Jon Kemp, Qnity CEO-elect and current president of DuPont’s Electronics business, shares his insights on the strategic separation from DuPont.
SMC Korea 2025 to Spotlight Next-Generation Memory and Materials Innovation amid AI Boom
05/13/2025 | SEMIThe Strategic Materials Conference (SMC) Korea 2025 is set to convene on May 14 at the Suwon Convention Center in Gyeonggi-do, South Korea, bringing together leading experts and innovators to highlight the critical role of materials innovation in addressing the performance, efficiency, and scalability requirements of AI-enabled semiconductor devices.
SEMI Applauds New Bill to Clarify Tax Credit Eligibility for Critical Semiconductor Suppliers Under U.S. CHIPS Act
05/12/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, announced support of the Strengthening Essential Manufacturing and Industrial Investment Act (SEMI Investment Act), which clarifies that critical materials suppliers to semiconductor manufacturers are eligible for the Advanced Manufacturing Investment Tax Credit (“Section 48D”) created by the United States CHIPS and Science Act.