Realizing Highly Efficient Quantum Dot LEDs with Metallic Nanostructures at Low Cost
January 23, 2018 | KAISTEstimated reading time: 1 minute
KAIST researchers have discovered a technology that enhances the efficiency of Quantum Dot LEDs.
Professor Yong-Hoon Cho from the Department of Physics and his team succeeded in improving the efficiency of Quantum Dot (QD) Light-Emitting Diodes (LEDs) by designing metallic nanostructure substrates.
QD LEDs possess very small semiconductor light sources and are considered to be the new rising technology for high performance full-color display. However, it is expensive to manufacture displays with QD LED only.
Existing QD-based displays use blue LEDs as a source of light, and they employ a method of color conversion through excitation of green and red QDs.
There are two inconveniences with the existing QD-based displays. As mentioned previously, QD LED is costly, hence the unit price of QD-based displays is higher. Also, the efficiency of a liquid type of QDs is drastically lowered after contact with air.
Professor Cho found the solution in a metallic nanostructure for lowering the production cost while improving the efficiency of QD LEDs.
The team exploited the phenomenon of so-called surface plasmonic resonances when nanoscale metallic structures are exposed to light. Depending on the metal, the size, and the shape, the properties of metallic structures vary.
The team used different metallic nanostructures for each QD LED – silver nanodisks for Red QDs and aluminum nanodisks for Green GDs – to make them more fluorescent.
With brighter QDs, it requires fewer QDs to manufacture QD LEDs, contributing to a lower unit price.
The team used silver and aluminum in this research, but metallic nanostructures can be redesigned according to the desired purposes.
Professor Cho said, “Implementing metallic nanostructures into QD LEDs in a proper manner can reduce the quantity of the QDs required for the system, leading to lower unit prices.
Suggested Items
Northrop Grumman Navigation Technology Completes Hypersonic Test Flights
05/14/2025 | Northrop GrummanNorthrop Grumman Corporation successfully completed two test flights of its Advanced Hypersonic Technology Inertial Measurement Unit at hypersonic speed, leveraging Stratolaunch’s reusable hypersonic airplane, Talon-A.
Vertical Aerospace, Honeywell Expand Partnership to Bring VX4 eVTOL to Market
05/13/2025 | HoneywellVertical Aerospace and Honeywell announced the signing of a new long-term agreement that expands their existing partnership and reinforces Honeywell’s commitment to the certification and production of Vertical’s electric vertical take-off and landing (eVTOL) aircraft, the VX4.
Northrop Grumman’s IVEWS Completes F-16 Electronic Warfare Operational Assessment
05/05/2025 | Northrop GrummanNorthrop Grumman Corporation’s IVEWS (Integrated Viper Electronic Warfare Suite) has successfully completed Operational Assessment flight testing on U.S. Air Force F-16 aircraft, demonstrating its effectiveness against advanced radar-guided threats.
Panasonic Avionics Completes Multi-Orbit Network Optimization Following Seamless Leo / Geo Switching in Flight
04/28/2025 | Panasonic AvionicsPanasonic Avionics Corporation (Panasonic Avionics), a leading provider of in-flight entertainment and connectivity (IFEC) solutions, has announced the successful optimization of its multi-orbit satellite network following switching between LEO and GEO networks in its flight test program.
QD-OLED to Account for 73% of OLED Monitor Shipments in 2025, Driven by Advancing Technology and New Products
04/16/2025 | TrendForceTrendForce’s latest investigations reveal that ongoing advancements in OLED displays are propelling the growth of QD-OLED monitor shipments. QD-OLED’s share of OLED monitor shipments is expected to rise from 68% in 2024 to 73% in 2025, highlighting its strong competitiveness in the high-end monitor market.