Sensors and Big Data Provide Farmers With Decision-Making Support
January 25, 2018 | Agência FAPESPEstimated reading time: 6 minutes

Researchers in the field of e-agriculture like to repeat an anecdote according to which farmers used to tell their children they should study if they wanted to leave for the town but now tell them to study if they want to stay on the farm.
Changes are under way not just in production but also in management. Big data combined with the Internet of Things makes plants and animals themselves the key decision-making support for rural producers. Precision agriculture already uses information technology to analyze climate, soil and other variables. Now, the producer’s management decisions can also be based on the signals emitted by crops and livestock.
“It’s no exaggeration to say that in the next ten years, we’ll see plants and animals responding to each stimulus in the production system. Decisions about crop and animal welfare will be based on data collected by biosensors implanted in each plant and each head of livestock,” said Iran Oliveira da Silva, a professor in the Biosystems Engineering Department of the University of São Paulo’s Luiz de Queiroz College of Agriculture (ESALQ-USP) in Brazil.
Silva was a speaker at the eScience Workshop on Agriculture in the Digital Age held in FAPESP’s auditorium in São Paulo to examine changes in agriculture due to the use of information technology.
“In the future, animals will talk, and you’ll remember me,” he said. “The ability to make decisions based on signals emitted by animals is already a reality in scientific research in various parts of the world. Studies in bioacoustics and animal vocalization enable us to use sound frequencies to understand an animal’s expression. Belgian vets can use technology to find out from ambient sound whether parts of a herd have diarrhea or tuberculosis, for example. And the error rate is under 1%.”
The workshop was attended by researchers affiliated with institutions throughout São Paulo State, who discussed the future of agriculture in Brazil in a setting where soybean fields, coffee groves, poultry farms and cattle ranches will be full of sensors that will help produce data and information on the need for more irrigation, ventilation, soil treatment or medication.
“Besides sensors, chips and biomarkers, many farmers are also using microdrones rather like mosquitoes equipped with cameras and sensors. They collect masses of data and can also carry out pollination,” said Jansle Vieira Rocha, a professor in the University of Campinas’s Agricultural Engineering School (FEAGRI-UNICAMP).
For Rocha, futurology is a much-needed activity, especially in sectors that are undergoing major changes, such as agriculture. “We have to think ahead and develop innovations,” he said. “We have to take advantage of seminars and meetings like this not just to present academic results but also to think about solutions to problems we don’t yet have.”
Brazilian agriculture is at the forefront in several ways, according to Rocha, including no-till cropping and integrated crop-livestock-forest systems, implemented in 11.5 billion hectares across Brazil according to the Brazilian Agricultural Research Corporation (EMBRAPA). “Much of our success is based on the scientific research supported by EMBRAPA, but in information technology, sensors and imaging, we still lag behind other countries,” he said.
A key issue in e-agriculture is how to combine the various kinds of data continuously generated by sensors in plants, animals, vehicles and machinery with climate and production data in such a way that all these data can be converted into useful information for farmers.
“This is a typical discussion in e-science, allowing researchers in computer science to dialogue with and understand the problems of researchers in other fields. It’s important to guarantee this dialogue,” said Claudia Bauzer Medeiros, one of the head coordinators of special programs for the FAPESP Research Program on eScience and Data Science and organizer of the workshop.
For the researchers who attended the event, multidisciplinarity is crucial to implementing e-agriculture effectively.
“It’s most important to consider the question of professional multidisciplinarity in agriculture,” Silva said. “We’re now experiencing the Internet of Things, high technology and data analysis in cropping and animal husbandry. For this reason, it’s fundamental to get people like animal scientists, vets, agronomists, biosystems engineers, agricultural and computer engineers and so on sitting around the same table to solve problems.”
Page 1 of 2
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Altair, Wichita State University’s NIAR Sign MoU to Accelerate Aerospace Innovation
09/16/2025 | AltairAltair, a global leader in computational intelligence, and Wichita State University’s (WSU) National Institute for Aviation Research (NIAR), one of the world’s leading aerospace research institutions, have signed a memorandum of understanding (MoU) to advance innovation across the aerospace and defense industries.
AI-Powered Wearables Transform How Consumers Interact with Everyday Technology
09/15/2025 | PR NewswireThe global demand for AI-driven, touchless wearable technologies is accelerating as consumers seek more natural, seamless and intuitive ways to interact with their devices. Traditional touch screens and voice assistants, while effective, are increasingly viewed as limiting in a world where multitasking, mobility and efficiency are key. As industries from consumer electronics to augmented reality and enterprise computing embrace the possibilities of gesture-based control, the market for neural interfaces is rapidly expanding
Hanwha Aerospace to Collaborate with BAE Systems on Advanced Anti-jamming GPS for Guided Missiles
09/15/2025 | HanwhaHanwha Aerospace has signed a contract with BAE Systems to integrate next-generation, anti-jamming Global Positioning System (GPS) technology into Hanwha Aerospace’s Deep Strike Capability precision-guided weapon system.
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.