Flexing for the Next Silicon Wave
January 31, 2018 | KAUSTEstimated reading time: 1 minute
A strategy that uses a screen-printed aluminium circuit to make silicon solar cells extremely flexible could enable them to become portable power sources. Developed by KAUST, such power sources could help to satisfy the growing demand for wearable and implantable devices, foldable displays and vehicle-integrated solar panels.
Crystalline silicon is naturally abundant and highly scalable and has reliable and consistent photovoltaic properties that are appealing for the development of industrial solar cells. However, its rigidity and weight have hindered its application for flexible electronics.
Attempts at enhancing material flexibility by generating thin films, while maintaining device performance, have fallen short: the resulting solar cells have shown a drop in performance for films thinner than 250 micrometers. “At this thickness, one cannot achieve flexible silicon solar cells,” says team leader, Muhammad Hussain, from KAUST.
Now, Hussain’s team has created a corrugated array comprising thin, rigid silicon segments using so-called interdigitated back contact solar cells. The segments are interconnected by screen-printed aluminum contacts. These contacts are positioned at the rear to optimize light absorption at the front of the solar cell and facilitate any modifications of the active silicon material. The array can bend and adopt various configurations, such as zigzags and bifacial structures, without cracking or losing its power conversion efficiency.
Starting from large-area crystalline silicon solar cells, the researchers etched a small portion of the cells into 140-micrometer-thick strips, while keeping the thickness of the remaining portion above 240 micrometers. “This allowed us to lower the bending radius of the cell to 140 micrometers while retaining the efficiency of the bulk (18%), record achievements for both silicon solar cell efficiency and bendability,” says lead author Rabab Bahabry, a graduating doctoral student from Saudi Arabia who received her bachelor’s degree in physics from King Abdulaziz University.
The researchers demonstrated that a series of five corrugated solar cells lit up multicolored light-emitting diodes. They also wrapped the cells around a glass mug to power a miniature humidity detection system placed on a plant leaf. When exposed to light from a desk lamp and humid conditions, the system turned on an LED and sent a notification to a smartphone.
The team is currently investigating ways to exploit these corrugated solar cells, which, according to Hussain, can be deployed in the most complex topologies. “Our approach is suitable for the Internet of Things and can meet a wide application spectrum,” he says.
Suggested Items
Northrop Grumman Navigation Technology Completes Hypersonic Test Flights
05/14/2025 | Northrop GrummanNorthrop Grumman Corporation successfully completed two test flights of its Advanced Hypersonic Technology Inertial Measurement Unit at hypersonic speed, leveraging Stratolaunch’s reusable hypersonic airplane, Talon-A.
Vertical Aerospace, Honeywell Expand Partnership to Bring VX4 eVTOL to Market
05/13/2025 | HoneywellVertical Aerospace and Honeywell announced the signing of a new long-term agreement that expands their existing partnership and reinforces Honeywell’s commitment to the certification and production of Vertical’s electric vertical take-off and landing (eVTOL) aircraft, the VX4.
Northrop Grumman’s IVEWS Completes F-16 Electronic Warfare Operational Assessment
05/05/2025 | Northrop GrummanNorthrop Grumman Corporation’s IVEWS (Integrated Viper Electronic Warfare Suite) has successfully completed Operational Assessment flight testing on U.S. Air Force F-16 aircraft, demonstrating its effectiveness against advanced radar-guided threats.
Panasonic Avionics Completes Multi-Orbit Network Optimization Following Seamless Leo / Geo Switching in Flight
04/28/2025 | Panasonic AvionicsPanasonic Avionics Corporation (Panasonic Avionics), a leading provider of in-flight entertainment and connectivity (IFEC) solutions, has announced the successful optimization of its multi-orbit satellite network following switching between LEO and GEO networks in its flight test program.
QD-OLED to Account for 73% of OLED Monitor Shipments in 2025, Driven by Advancing Technology and New Products
04/16/2025 | TrendForceTrendForce’s latest investigations reveal that ongoing advancements in OLED displays are propelling the growth of QD-OLED monitor shipments. QD-OLED’s share of OLED monitor shipments is expected to rise from 68% in 2024 to 73% in 2025, highlighting its strong competitiveness in the high-end monitor market.