Beyond Silicon: Researchers Solve a Materials Mystery Key to Next-Generation Electronic Devices
February 6, 2018 | University of Wisconsin-MadisonEstimated reading time: 2 minutes
Lennon and McCartney. Abbott and Costello. Peanut butter and jelly.
Think of one half of any famous duo, and the other half likely comes to mind. Not only do they complement each other, but together they work better.
The same is true in the burgeoning field of oxide electronics materials. Boasting a wide array of behaviors, including electronic, magnetic and superconducting, these multifunctional materials are poised to expand the way we think about the functions of traditional silicon-based electronic devices such as cell phones or computers.
Yet until now, a critical aspect has been missing — one that complements the function of electrons in oxide electronics. And a team led by University of Wisconsin–Madison materials scientist Chang-Beom Eom has directly observed that missing second half of the duo necessary to move oxide electronics materials forward.
It’s called a two-dimensional hole gas — a counterpart to something known as a two-dimensional electron gas. For more than a decade, researchers have recognized a hole gas appearance was possible, but haven’t been able to create it experimentally.
“The 2D hole gas was not possible primarily because perfect-enough crystals could not be grown,” says Eom, the Theodore H. Geballe Professor and Harvey D. Spangler Distinguished Professor of materials science and engineering. “Inside, there were defects that killed the hole gas.”
Eom is a world expert in material growth, using techniques that allow him to meticulously build, or “grow,” each layer of a material with atomic precision. That expertise, combined with insight into the interaction between layers in their structure, was key in identifying the elusive 2D hole gas.
“We were able to design the correct structure and make near-perfect crystals, all without defects that degrade the hole gas,” he says.
Also important in identifying the hole gas was the almost-symmetrical way in which Eom assembled the various layers — something like a club sandwich. While other researchers have made the material in a bi-layer structure, Eom designed a triple layer. He alternated layers of strontium oxide and titanium dioxide on the bottom, then layers of lanthanum oxide and aluminum oxide, then added additional layers of strontium oxide and titanium dioxide on the top.
As a result, the hole gas forms at the interface of the layers on the top, while the electron gas forms at the interface of the layers on the bottom — the first demonstration of a very powerful complementary pair.
Just as people 50 years ago likely could not have envisioned communicating via wireless devices, the advance sets forth a platform that can enable new concepts-applications that today remain beyond our wildest dreams.
“We’re not just improving the performance of devices,” says Eom. “So, not improving a cell phone, for example — but envisioning an entirely new device made possible by this advance. This is the beginning of an exciting new path.”
Eom’s collaborators from UW–Madison include physics professor Mark Rzchowski and graduate students in materials science and engineering and physics, as well as collaborators from The Ohio State University, the University of Nebraska at Lincoln, Argonne National Laboratory, and Sungkyunkwan University and Pohang University of Science and Technology in Korea.
Suggested Items
Tax Policy Update from IPC: The House Tax Bill, and What It Means for Electronics Manufacturers
05/20/2025 | IPCOn May 13, the House Ways and Means Committee advanced a major tax package that includes several provisions supported by IPC. These provisions—including restoring bonus depreciation, immediate R&D expensing, and strengthening the pass-through deduction—were identified by IPC members as key tools that would help them invest, grow, and compete more effectively.
KYZEN to Focus on Aqueous Cleaning and Stencil Cleaning at SMTA Juarez
05/20/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, will exhibit at the SMTA Juarez Expo and Tech Forum, scheduled to take place Thursday, June 5 at the Injectronics Convention Center in Ciudad Jarez, Chihuahua.
Federal Electronics Adds AS9100 Certification to Hermosillo, Mexico Facility, Expanding Aerospace & Defense Capabilities
05/20/2025 | Federal ElectronicsFederal Electronics, a leader in providing advanced electronic manufacturing services, has officially added AS9100 certification to its Hermosillo, Mexico facility, further aligning its operations with the quality standards required by the aerospace and defense industries.
Indium to Feature Power Electronics Solutions at SEMICON Southeast Asia 2025
05/19/2025 | Indium CorporationAs a trusted leader in materials science for advanced electronics assembly, Indium Corporation® is proud to showcase its innovative power electronics solutions at SEMICON Southeast Asia 2025, May 20–22, in Marina Bay Sands, Singapore.
NEDME 2025 Announces Diverse and Distinguished Speaker Lineup
05/19/2025 | ASC SunstoneThe Northwest Electronics Design & Manufacturing Expo (NEDME) is thrilled to announce the impressive speaker lineup for the upcoming 2025 event. Taking place on Wednesday, October 22, 2025, at the Wingspan Event & Conference Center in Hillsboro, Oregon, NEDME 2025 will feature a dynamic array of thought leaders from across the electronics design and manufacturing sectors.