Physicists Create New Form of Light
February 16, 2018 | MITEstimated reading time: 6 minutes
The researchers then developed a hypothesis to explain what might have caused the photons to interact in the first place. Their model, based on physical principles, puts forth the following scenario: As a single photon moves through the cloud of rubidium atoms, it briefly lands on a nearby atom before skipping to another atom, like a bee flitting between flowers, until it reaches the other end.
If another photon is simultaneously traveling through the cloud, it can also spend some time on a rubidium atom, forming a polariton — a hybrid that is part photon, part atom. Then two polaritons can interact with each other via their atomic component. At the edge of the cloud, the atoms remain where they are, while the photons exit, still bound together. The researchers found that this same phenomenon can occur with three photons, forming an even stronger bond than the interactions between two photons.
“What was interesting was that these triplets formed at all,” Vuletic says. “It was also not known whether they would be equally, less, or more strongly bound compared with photon pairs.”
The entire interaction within the atom cloud occurs over a millionth of a second. And it is this interaction that triggers photons to remain bound together, even after they’ve left the cloud.
“What’s neat about this is, when photons go through the medium, anything that happens in the medium, they ‘remember’ when they get out,” Cantu says.
This means that photons that have interacted with each other, in this case through an attraction between them, can be thought of as strongly correlated, or entangled — a key property for any quantum computing bit.
“Photons can travel very fast over long distances, and people have been using light to transmit information, such as in optical fibers,” Vuletic says. “If photons can influence one another, then if you can entangle these photons, and we’ve done that, you can use them to distribute quantum information in an interesting and useful way.”
Going forward, the team will look for ways to coerce other interactions such as repulsion, where photons may scatter off each other like billiard balls.
“It’s completely novel in the sense that we don’t even know sometimes qualitatively what to expect,” Vuletic says. “With repulsion of photons, can they be such that they form a regular pattern, like a crystal of light? Or will something else happen? It’s very uncharted territory.”
This research was supported in part by the National Science Foundation.
Page 2 of 2Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Kris Moyer Discusses His Emerging Design Technologies Class
09/04/2025 | Marcy LaRont, I-Connect007Kris Moyer, a design instructor for the Global Electronics Association, will be teaching his advanced PCB design class this fall. If you’re ready to level up your design education, you won’t want to miss this interview. The PCB Design for Emerging Design Technologies course is designed to provide the skills necessary to create PCB/PBA designs that require cutting-edge emerging design technologies and comply with all necessary IPC standards, including new standards being developed in this area.
Leadership Change at Koh Young Europe
08/14/2025 | Koh YoungAfter 16 years of leading Koh Young Europe as General Manager, we would like to announce that Harald Eppinger will step down from his executive role.
Driving Innovation: Inner Layer Alignment Methods in PCB Production
08/06/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, precision is a fundamental requirement. Among many complex processes, the accurate registration of inner layers before lamination is one of the most critical. Much like a child's game where rings must be perfectly stacked onto a single pin, PCB manufacturers align multiple conductive and insulating layers to form a cohesive, functional board. This alignment directly affects PCB precision; tighter layer alignment results in smaller "annular rings," superior performance, and higher yields.
From Attraction to Action: Where Marketing Ends and Sales Begins
07/29/2025 | Brittany Martin, I-Connect007Before a PO hits the system, marketing has already done a lot of heavy lifting. Without strategic marketing, the PO might never arrive. At I-Connect007, we have been fortunate to help many companies achieve sales success through marketing. The key to success? Understanding how marketing leads to sales.
Siemens Expands Global Electronics Intelligence Reach and Supplyframe Portfolio with Wevolver Acquisition
04/30/2025 | Siemens Digital Industries SoftwareSiemens Digital Industries Software announced its intention to acquire Wevolver, expanding its audience reach, enhancing the Supplyframe product portfolio, and combining digital marketing and integrated campaign programs that include go-to-market support and content creation.