Ultra-Sensitive Optomechanical Device at Room Temperature
February 19, 2018 | ICFOEstimated reading time: 1 minute
An ICFO study has developed an optomechanical device with the lowest thermal force noise levels ever, only attainable so far under cryogenic conditions.
Optomechanics investigates the interactions between light and matter with the use of mechanical resonators. Optomechanics can be used as an extremely sensitive instrument for the study of new physical phenomena at the nanoscale (e.g. spin physics, quantum electron transport, surface science, and light-matter interaction).
Carbon Nanotube resonators have shown to be excellent ultra-high sensitivity sensing devices for these type of studies. In addition, one of the main goals of using these devices is to be able to observe and manipulate the quantum states of the macroscopic mechanical devices, although, the drawback lies in the thermal noise force, which, if not controlled properly, ends up diluting the quantum effects.
In a recent study published in Nature Communications, ICFO researchers Alexandros Tavernarakis, Alexandros Stavrinadis, and Ioannis Tsioutsios led by ICFO Prof. Adrian Bachtold, in collaboration with Prof. Pierre Verlot (iLM, Lyon, visiting Scientist at ICFO 2014 – 2016) report on a novel optomechanical device with the lowest level of thermal noise at room temperature, two orders of magnitude below the current state-of-the-art devices so far. Such discovery makes this device the most sensitive scanning device ever built.
Their achievement has been possible thanks to the use of an optically active nanoparticle, placed at the tip of a single-clamp Carbon Nanotube (CNT) resonator. The absorptive nature of this nanoparticle has allowed the system to control its vibrational states without the use, for the first time, of an optical cavity or optical resonator that helps attenuate or amplify the vibrations. By precisely calibrating the temperature of the system, they were able to achieve at room temperature thermal force noise levels only attainable under cryogenic conditions.
Because of its scanning probe geometry, this novel system has proven to show its potential for a number of applications not only for quantum technologies, but also for mass spectroscopy, ultra-sensitive force sensing, surface imaging, and even nanoplasmonics.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
MEMS & Imaging Sensors Summit to Spotlight Sensing Revolution for Europe’s Leadership
09/11/2025 | SEMIIndustry experts will gather November 19-20 at the SEMI MEMS & Imaging Sensors Summit 2025 to explore the latest breakthroughs in AI-driven MEMS and imaging optimization, AR/VR technologies, and advanced sensor solutions for critical defence applications.
Direct Imaging System Market Size to Hit $4.30B by 2032, Driven by Increasing Demand for High-Precision PCB Manufacturing
09/11/2025 | Globe NewswireAccording to the SNS Insider, “The Direct Imaging System Market size was valued at $2.21 Billion in 2024 and is projected to reach $4.30 Billion by 2032, growing at a CAGR of 8.68% during 2025-2032.”
I-Connect007’s Editor’s Choice: Five Must-Reads for the Week
07/04/2025 | Marcy LaRont, I-Connect007For our industry, we have seen several bullish market announcements over the past few weeks, including one this week by IDC on the massive growth in the global server market. We’re also closely watching global trade and nearshoring. One good example of successful nearshoring is Rehm Thermal Systems, which celebrates its 10th anniversary in Mexico and the official opening of its new building in Guadalajara.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.