Electric Eel-Inspired Device Reaches 110 Volts
February 19, 2018 | Biophysical SocietyEstimated reading time: 1 minute

In an effort to create a power source for future implantable technologies, a team led by Michael Mayer from the University of Fribourg, along with researchers from the University of Michigan and UC San Diego, developed an electric eel-inspired device that produced 110 volts from gels filled with water, called hydrogels. Their results show potential for a soft power source to draw on a biological system's chemical energy.
Anirvan Guha, graduate student at the University of Fribourg's Adolphe Merkle Institute, will present the research during the 62nd Biophysical Society Annual Meeting, held Feb. 17-21, in San Francisco, California. Inspired by the electric eel's ability to generate hundreds of volts, Guha and his colleagues stacked hydrogels full of varying strengths of salt water.
Ions are charged atoms or molecules and when ions accumulate on either side of a cell membrane, they form an ion gradient. The researchers harvested energy from the electric potential, or voltage, across the ion gradients. As more hydrogels were stacked on top of each other, the greater the voltage increase. The researchers were able to produce up to 110 volts.
To stack the thousands of individual hydrogels necessary to generate over 100 volts, the researchers used a printer that "deposits little droplets of gel ... with the precision and spatial resolution to print an array of almost 2,500 gels on a sheet the size of a normal piece of printer paper," Guha said.
The team's next goal is to increase the current running through the hydrogel. "Right now, we're in the range of tens to hundreds of microamperes [the basic unit for measuring an electrical current], which is too low to power most electronic devices," Guha said.
In the future, the research team hopes their results will help develop power sources for implantable devices that can "utilize the [ion] gradients that already exist within the human body," Guha said. "Then you may be able to create a battery which continuously recharges itself, because these ionic gradients are constantly being re-established within the body."
Suggested Items
Global Semiconductor Sales Increase 18.8% in Q1 2025 Compared to Q1 2024; March 2025 Sales up 1.8% MoM
05/06/2025 | SIAThe Semiconductor Industry Association (SIA) announced global semiconductor sales were $167.7 billion for the first quarter of 2025, an increase of 18.8% compared to the first quarter of 2024 but 2.8% less than the fourth quarter of 2024.
Commerce Secretary Howard Lutnick Visits TSMC Arizona Fabrication Facility for Third Fab Ground Breaking
05/02/2025 | U.S. Department of CommerceU.S. Secretary of Commerce Howard Lutnick visited the Taiwan Semiconductor Manufacturing Company (TSMC) semiconductor fabrication facility in Phoenix, Arizona where the company broke ground on a third fab facility.
Rogers Reports Q1 2025 Results
04/30/2025 | Rogers CorporationNet sales of $190.5 million decreased 0.9% versus the prior quarter. Advanced Electronics Solutions (AES) net sales increased by 1.8% primarily related to higher ADAS and aerospace and defense sales, partially offset by lower EV/HEV and industrial sales. Elastomeric Material Solutions (EMS) net sales decreased by 4.3% primarily from a seasonal decline in portable electronics sales and lower EV/HEV sales, partially offset by higher general industrial sales.
Cicor’s Shareholders Approve All Proposals
04/18/2025 | CicorThe Annual General Meeting approved the 2024 annual report, the annual financial statements, the consolidated financial statements, the report on non-financial matters and the appropriation of available earnings.
Würth Elektronik ICS at PCIM Europe 2025
04/14/2025 | Wurth ElektronikWürth Elektronik ICS will be exhibiting at PCIM in Nuremberg from 6 to 8 May 2025. The specialist for PCB connection solutions in the high-current sector and inventor of Powerelements will be focussing on power electronics at exhibition stand 337 in hall A6.