Layered Oxides for Rechargeable Zinc Batteries
February 27, 2018 | KAUSTEstimated reading time: 1 minute

Layered oxides can form the basis of high-performance materials for battery electrodes. A KAUST team has developed a cheap and simple technique that creates this crucial element for rechargeable zinc-ion cells.
Lithium-ion batteries power most of our everyday electronic devices, such as cell phones and laptop computers. But there is a growing need to store energy on much larger scales, such as retaining the electricity generated by solar cells for use at night. Scaling lithium-ion battery technology up to such an industrial-level application is expensive and presents serious safety issues, including toxicity and the flammability of the electrolytes.
The team, led by Husam Alshareef, is instead developing zinc-ion batteries that use a water-based electrolyte, which has the advantages of being air stable, safe, environmentally friendly and cheap. “Aqueous batteries based on zinc ions can offer a safer, cost-effective solution to lithium ion batteries for grid storage,” says Alshareef. “Further, they use more environmentally friendly materials than lead-acid batteries.”
Lithium-ion and zinc-ion batteries work by electrically storing ions in an electrode. During charging, ions flow through an electrolyte from one electrode to another, where they are captured by a process known as intercalation. This means that electrode materials are key to optimizing a battery’s performance.
One family of materials that has shown much promise in recent zinc-ion battery research is vanadium-based compounds. These materials have a layered and very open atomic-crystal structure with plenty of spaces for trapping and storing zinc ions.
The team has now developed a microwave approach to rapidly synthesize ultralong zinc pyrovanadate (Zn3V2O7(OH)2·2H2O) cathodes. They mixed Zn(NO3)2·2H2O with commercial NH4VO3 powder, each dissolved in deionized water, and applied microwave radiation to induce a reaction. The resulting material was then dried before being used in a battery.
This zinc-ion battery, they show, can achieve an energy density of as much as 214 watt-hours per kilogram, which is much higher than previously reported aqueous zinc-ion batteries and commercial lead–acid batteries, with improved stability.
The team believes their microwave technique could also be useful for creating other metal pyrovanadate compounds, explains Chuan Xia, Ph.D. student and lead author of the study. “We have already made compounds in which zinc is replaced with other cations that create larger metal-oxide polyhedra that are able to intercalate even higher amounts of zinc ions”, says Xia.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.