Atomic Movies Explain Why Perovskite Solar Cells Are More Efficient
March 2, 2018 | U.S. Department of Energy, Office of ScienceEstimated reading time: 1 minute

Sunlight causes large changes to the underlying network of atoms that make up perovskites, a promising material for solar cells. Before being hit with light, six iodine atoms rest around a lead atom. Within 10 trillionths of a second after being hit with light, the iodine atoms whirl around each lead atom.
Image caption: Iodine atoms (gold) in perovskites respond to light with unusual rotational motions and distortions around a lead atom (white). These changes could explain the high efficiency of these next-generation solar cell (bottom) materials. (Image: Greg Stewart, SLAC National Accelerator Laboratory)
These first atomic steps distort the structure and result in long-lived changes, similar in size to those observed in melting crystals. Further, the atoms’ motions alter the way electricity moves and may help explain the efficiency of perovskites in solar cells.
In recent years, perovskites have become superstars in the solar cell industry. They are cheap and easy to produce. Despite their popularity, scientists don’t know why perovskites are so efficient. This work shows how atoms in perovskites respond to light and could explain the high efficiency of these next-generation solar cell materials.
Although perovskite solar cell efficiencies have climbed above the 20 percent mark, the fundamental mechanism responsible for these efficiencies is not understood.
To gain insights into the mechanisms, researchers created stop-motion movies of the atoms involved just after the light hits the hybrid perovskites, made from lead, iodine, and methylammonium.
The iodine atoms are arranged in octohedra, eight-sided structures that look like two pyramids joined at their bases. The lead atoms sit inside the octohedra; the methylammonium molecules sit between octohedra. This architecture is common to many of the perovskites investigated for solar cell applications.
At SLAC, researchers hit a perovskite film with two bursts from ultrafast lasers. The technique, called ultrafast electron diffraction, lets them reconstruct the atomic structure. By repeating the experiment with different time delays between the first and second pulse of electrons, the team created a stop-motion movement of the iodine atoms whirling around the lead atoms. That is, a rotationally disordered halide octahedral structure formed in the picoseconds after the light struck.
This work shows the important role of light-induced structural deformations within the lead-iodine lattice. These structural changes could alter the way that charges (electrons and their associated holes) move in hybrid perovskites and provide new information about solar cell efficiencies.
Suggested Items
Almonty Joins DARPA Funded Critical Minerals Forum
05/20/2025 | BUSINESS WIREAlmonty Industries Inc., a leading global producer of tungsten concentrate, announced that, upon being invited to join, it has attained membership in the Critical Minerals Forum (CMF), a US Defense Advanced Research Projects Agency (DARPA)-funded not-for-profit trade association dedicated to building resilient and diversified critical minerals supply chains.
Sanmina Announces Acquisition of Data Center Infrastructure Manufacturing Business of ZT Systems from AMD
05/19/2025 | PRNewswireSanmina Corporation, a leading integrated manufacturing solutions company, announced that it has entered into a definitive agreement to acquire the data center infrastructure manufacturing business of ZT Systems, a leading provider of Cloud and AI infrastructure to the world's largest hyperscalers, from AMD.
SEMI North America Advisory Board Welcomes New Member From SACHEM
05/15/2025 | SEMISEMI announced the election of a new member to the SEMI North America Advisory Board (NAAB), Rosemary Steen Hoffman, Chief Executive Officer, SACHEM, Inc., a premier supplier of high-purity, precision-based chemistries.
OSI Systems Receives $7 Million Order for Medical Technology Components
05/13/2025 | BUSINESS WIREOSI Systems, Inc. announced that its Optoelectronics and Manufacturing division has been awarded an order for approximately $7 million to supply essential components for a leading healthcare innovator specializing in patient diagnostic and care applications.
SMC Korea 2025 to Spotlight Next-Generation Memory and Materials Innovation amid AI Boom
05/13/2025 | SEMIThe Strategic Materials Conference (SMC) Korea 2025 is set to convene on May 14 at the Suwon Convention Center in Gyeonggi-do, South Korea, bringing together leading experts and innovators to highlight the critical role of materials innovation in addressing the performance, efficiency, and scalability requirements of AI-enabled semiconductor devices.