Method for Predicting Dirac Points Developed, Helping Next-Generation Electronics Research
March 2, 2018 | RIKENEstimated reading time: 2 minutes
RIKEN researchers have developed a set of general principles on electron phenomena known as ‘Dirac points’ that should enable researchers to better study and manipulate them. This will contribute to global work on next-generation electronic devices.
Saeed Bahramy of the RIKEN Center for Emergent Matter Science and colleagues from St Andrews University (UK) led an international collaboration that combined theoretical modeling with experimental measurements to predict whether electrons will form the unusual cross-over states in a family of useful two-dimensional materials (Nature Materials, "Ubiquitous formation of bulk Dirac cones and topological surface states from a single orbital manifold in transition-metal dichalcogenides").
Electrons in solid materials can only have a restricted range of energies, known as bands. These include a lower-energy valence band, filled with electrons that stay close to their atoms; and a higher-energy conduction band, which may contain electrons that are more mobile.
Under certain circumstances, electrons in these bands can cross over and ultimately reverse their positions in this energy hierarchy. At the crossover, known as the Dirac point, electrons in each band will have precisely the same energy and momentum (Fig. 1).
Dirac points can cause a range of odd behaviors. For example, they may allow electrons in the bulk of a material to travel as if they were massless particles, or give insulators an electrically conductive surface. These so-called bulk Dirac points and topological surface states are expected to provide new ways to manipulate electrons and use them to process data.
Bahramy and colleagues studied these electronic states in materials called transition metal dichalcogenides (TMDs), which are made from metals such as platinum or palladium and an element from the chalcogen family, such as selenium or tellurium. These compounds can exist as two-dimensional materials, similar to the most famous two-dimensional material, graphene.
The team found that these electronic states largely arise from the behavior of electron orbitals on the chalcogenide elements in the materials. By calculating the properties of those orbitals, the researchers could predict whether a particular material will exhibit unusual states.
Contrary to expectations, this approach suggested that bulk Dirac points and topological surface states could coexist in a range of TMDs. The team then used angle-resolved photoemission spectroscopy (ARPES) to confirm their presence in various TMDs. “This opens new possibilities to create electronic devices with advanced functionalities,” says Bahramy.
This theoretical framework should also allow researchers to tailor the properties and locations of Dirac points in TMDs. “We expect the same phenomena across a wide range of materials that share the same symmetry properties as the TMDs,” says Bahramy. “We hope we can use the general principles we have proposed in this work to design materials with tuneable topological properties.”
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.