Cleaning Nanowires to Get out More Light
March 6, 2018 | KAUSTEstimated reading time: 1 minute
A technique for reducing the loss of light at the surface of semiconductor nanostructures has been demonstrated by scientists at KAUST.
Some materials can efficiently convert the electrons in an electrical current into light. These so-called semiconductors are used to create light-emitting diodes or LEDs: small, light, energy-efficient, long-lasting devices that are increasingly prevalent in both lighting and display applications.
The color, or wavelength, of the emitted light can be determined by choosing the appropriate material. Gallium arsenide, for example, emits predominantly infrared light. For shorter wavelengths that move into the blue or ultraviolet region of the spectrum, scientists have turned to gallium nitride. Then, to tune down the emission wavelength, aluminum can be added, which alters the spacing between the atoms and increases the energy bandgap.
However, numerous factors prevent all the radiation created in the semiconductor escaping the device to act as an efficient light source. Firstly, most semiconducting materials have a high refractive index, which makes semiconductor-air interfaces highly reflected--at some angles all light bounces backwards in a process known as total internal reflectivity. A second limitation is that imperfections at the surface act as traps that reabsorb the light before it can escape.
Postdoc Haiding Sun and his KAUST colleagues, including his supervisor, Assistant Prof. Xiaohang Li, Prof. Boon Ooi and Assistant Prof. Iman Roqan, have developed LEDs that are made up of a tight array of dislocation-free nanometer-scale aluminum-gallium-nitride nanowires on a titanium-coated silicon substrate. More light can be efficiently extracted due to the presence of the air gaps between nanowires via scattering. The trade-off however is that arrays of nanowires have a larger surface area than a planar structure. "Because of the large surface-to-volume ratio of nanowires, their optical and electrical properties are highly sensitive to their surroundings," says Sun. "Surface states and defects will lead to low-efficiency light-emitting devices."
Sun and the team show that treating the nanowires in a diluted potassium-hydroxide solution can suppress the surface reabsorption by removing dangling chemical bonds and preventing oxidization. Their results showed that a 30 second treatment led to a 49.7% enhancement in the ultraviolet light output power as compared with an untreated device.
"We aim to improve our device's performance in several ways," says Sun. "For example, we will optimize the nanowire growth conditions, we will use quantum-well structures in the active region and we will use different metal substrates to improve the light-extraction efficiency."
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Polar Instruments Announces Additive Transmission Line Support for Si9000e
08/20/2025 | Polar InstrumentsTransmission lines embedded into the PCB surface are a feature of UHDI constructions. The 2025 fall release of Polar's Si9000e PCB impedance & insertion loss transmission line field solver incorporates eight new single ended, differential and coplanar transmission line structures.
Henniker Plasma Launches Stratus Turnkey Plasma Manufacturing Cell
08/13/2025 | Henniker PlasmaHenniker Plasma, a leading manufacturer of plasma treatment systems, proudly announces the launch of its Stratus Plasma Manufacturing Cell range — a fully integrated, turnkey solution that combines advanced atmospheric plasma surface treatment with robotic automation.
Trouble in Your Tank: Metallizing Flexible Circuit Materials—Mitigating Deposit Stress
08/04/2025 | Michael Carano -- Column: Trouble in Your TankMetallizing materials, such as polyimide used for flexible circuitry and high-reliability multilayer printed wiring boards, provide a significant challenge for process engineers. Conventional electroless copper systems often require pre-treatments with hazardous chemicals or have a small process window to achieve uniform coverage without blistering. It all boils down to enhancing the adhesion of the thin film of electroless copper to these smooth surfaces.
Designers Notebook: Basic PCB Planning Criteria—Establishing Design Constraints
07/22/2025 | Vern Solberg -- Column: Designer's NotebookPrinted circuit board development flows more smoothly when all critical issues are predefined and understood from the start. As a basic planning strategy, the designer must first consider the product performance criteria, then determine the specific industry standards or specifications that the product must meet. Planning also includes a review of all significant issues that may affect the product’s manufacture, performance, reliability, overall quality, and safety.