Modified, 3D-Printable Alloy Shows Promise for Flexible Electronics, Soft Robots
March 8, 2018 | Oregon State UniversityEstimated reading time: 2 minutes
Researchers in Oregon State University’s College of Engineering have taken a key step toward the rapid manufacture of flexible computer screens and other stretchable electronic devices, including soft robots.
The advance by a team within the college’s Collaborative Robotics and Intelligent Systems Institute paves the way toward the 3D printing of tall, complicated structures with a highly conductive gallium alloy.
Researchers put nickel nanoparticles into the liquid metal, galinstan, to thicken it into a paste with a consistency suitable for additive manufacturing.
“The runny alloy was impossible to layer into tall structures,” said Yiğit Mengüç, assistant professor of mechanical engineering and co-corresponding author on the study. “With the paste-like texture, it can be layered while maintaining its capacity to flow, and to stretch inside of rubber tubes. We demonstrated the potential of our discovery by 3D printing a very stretchy two-layered circuit whose layers weave in and out of each other without touching.”
Gallium alloys are already being used as the conductive material in flexible electronics; the alloys have low toxicity and good conductivity, plus they’re inexpensive and “self-healing” – able to attach back together at break points.
But prior to the modification developed at OSU, which used sonication – the energy of sound – to mix the nickel particles and the oxidized gallium into the liquid metal, the alloys’ printability was restricted to 2-dimensional.
For this study, researchers printed structures up to 10 millimeters high and 20 millimeters wide.
“Liquid metal printing is integral to the flexible electronics field,” said co-author Doğan Yirmibeşoğlu, a robotics Ph.D. student at OSU. “Additive manufacturing enables fast fabrication of intricate designs and circuitry.”
The field features a range of products including electrically conductive textiles; bendable displays; sensors for torque, pressure and other types of strain; wearable sensor suits, such as those used in the development of video games; antennae; and biomedical sensors.
“The future is very bright,” Yirmibeşoğlu said. “It’s easy to imagine making soft robots that are ready for operation, that will just walk out of the printer.”
The gallium alloy paste demonstrates several features new to the field of flexible electronics, added co-corresponding author Uranbileg Daalkhaijav, Ph.D. candidate in chemical engineering.
“It can be made easily and quickly,” Daalkhaijav said. “The structural change is permanent, the electrical properties of the paste are comparable to pure liquid metal, and the paste retains self-healing characteristics.”
Future work will explore the exact structure of the paste, how the nickel particles are stabilized, and how the structure changes as the paste ages.
The Office of Naval Research Young Investigator Program supported this research.
About the OSU College of Engineering
The OSU College of Engineering is among the nation's largest and most productive engineering programs. Since 1999, the college has more than tripled its research expenditures to $37.2 million by emphasizing highly collaborative research that solves global problems. It is a leader in signature research areas, including precision health, clean energy, resilient infrastructure and advanced manufacturing; and targeted strategic areas, including robotics, materials research and clean water.
Suggested Items
Global PCB Connections: Rigid-flex and Flexible PCBs—The Backbone of Modern Electronics
05/20/2025 | Jerome Larez -- Column: Global PCB ConnectionsIn the past decade, flex and rigid-flex PCB technology has become the fastest-growing market segment. As an increasing number of PCB companies develop the capabilities to fabricate this technology, PCB designers are becoming comfortable incorporating these designs into their products.
Flexible PCB Market to Reach $61.75B by 2032, Driven by the Demand for Compact Electronics, Automotive and Medical Applications
05/16/2025 | Globe NewswireAccording to the SNS Insider, “The Flexible PCB Market was valued at USD 21.42 billion in 2023 and is expected to reach $61.75 billion by 2032, growing at a CAGR of 12.52% over the forecast period 2024-2032.”
CEE PCB to Exhibit at The Battery Show Europe 2025
05/14/2025 | CEE PCBTom Yang, CEO of CEE PCB, has announced that the company will exhibit at The Battery Show 2025, held from June 3-5 at the Messe Stuttgart in Stuttgart, Germany, in Booth F69 in Hall 7.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
05/02/2025 | Marcy LaRont, PCB007 MagazineIn our industry, this week’s must-read features include CEE’s Tom Yang and his perspective on having a global business amidst tariff talk and other challenges. Joe Fjelstadt talks to the “Flexperts,” Nick Koop of TTM and Mark Finstead of Flexible Circuit Technologies. Nolan Johnson interviews the McGucken Group about the importance of empathic leadership in BANI times. NCAB’s Ryan Miller writes about reliability and compliance for building PCBs for medical applications, and surprise, more news from Siemens.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.