Scientists Confirm Century-Old Speculation on the Chemistry of a High-Performance Battery
March 12, 2018 | Berkeley LabEstimated reading time: 5 minutes

Scientists have discovered a novel chemical state of the element manganese. This chemical state, first proposed about 90 years ago, enables a high-performance, low-cost sodium-ion battery that could quickly and efficiently store and distribute energy produced by solar panels and wind turbines across the electrical grid.
This direct proof of a previously unconfirmed charge state in a manganese-containing battery component could inspire new avenues of exploration for battery innovations.
X-ray experiments at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) were key in the discovery. The study results were published Feb. 28 in the journal Nature Communications.
Scientists at Berkeley Lab and New York University participated in the study, which was led by researchers at Natron Energy, formerly Alveo Energy, a Santa Clara, California-based battery technology company.
The battery that Natron Energy supplied for the study features an unconventional design for an anode, which is one of its two electrodes. Compared with the relatively mature designs of anodes used in lithium-ion batteries, anodes for sodium-ion batteries remain an active focus of R&D.
The anode featured in this latest study is made up of a blend of elements – including manganese, carbon and nitrogen – that is chemically similar to the formula of the iron-containing paint pigment known as Prussian blue.
“Typically, in lithium-ion and sodium-ion batteries, the anode is more often carbon-based,” said Wanli Yang a staff scientist at Berkeley Lab’s Advanced Light Source, the source of X-rays that were used in the battery experiments.
But in this case, both of the battery’s electrodes utilize the same type of materials based on elements known as “transition metals” that are useful in chemistry because they can exhibit various charged states. The other electrode, called a cathode, contains copper, nitrogen, carbon, and iron.
“The very interesting part here is that both electrodes are based on the chemistry of transition metals in the same type of materials,” he added, with iron in the cathode and a special manganese chemistry in the anode.
“One of the direct benefits of utilizing such materials for both electrodes in the battery is that neither of the two electrodes fundamentally limits the power capability, cycle life, or cost of the device,” said Colin Wessells, CEO at Natron Energy. The battery outperforms the Department of Energy’s cycle-life and price targets for grid-scale energy storage, as the researchers report in their latest study.
Wessells noted that the battery is very stable, its materials are abundant, its overall cost is competitive with conventional lead-acid batteries, and it has a lesser environmental footprint than conventional batteries.
The battery has been shown to deliver up to 90 percent of its total energy in a very fast, five-minute discharge, and to retain about 95 percent of its discharge capacity for 1,000 cycles. It offers an alternative to gravity-based energy storage systems for electric grid, in which water is pumped uphill and then released downhill on demand to generate electricity.
Just how the battery achieves its high performance, though, had puzzled researchers.
There was speculation, dating back to a 1928 German-language journal article, that manganese could exist in a so-called “1-plus” or “monovalent” state, which means that a manganese atom in this state loses only a single electron. This is unusual, as manganese atoms typically are known to give up two or more electrons, or no electrons, in chemical reactions, but not just one.
Such a novel chemical state would enable a voltage range that is useful for battery anodes. But there hadn’t been any measurements confirming this monovalent form of manganese.
The Natron Energy researchers studied the battery materials at Berkeley Lab’s Molecular Foundry, a nanoscience center, and then offered up some sample battery cells for study at the ALS.
The first round of X-ray experiments at the ALS, which used a technique called soft X-ray absorption spectroscopy, appeared to show mainly the 2-plus form of manganese.
“We only caught a hint (of another form) in the initial tests, and had to rely heavily on theory to speculate about a different state,” said Andrew Wray at New York University, who performed the theoretical calculations.
Page 1 of 2
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.