Study Reveals New Insights into How Hybrid Perovskite Solar Cells Work
March 21, 2018 | SLAC National Accelerator LaboratoryEstimated reading time: 6 minutes
The researchers also found that terahertz light fields are much stronger when perovskite is hit with high-energy light waves.
“We found that radiated terahertz light is orders of magnitudes more intense when you excite the electrons with violet light versus low-energy infrared light,” Lindenberg said. “That was an unexpected result.”
This discovery could provide new insights on high-energy “hot” electrons, Guzelturk said.
“Violet light imparts electrons with excess kinetic energy, creating hot electrons that move much faster than other electrons,” he said. “However, these hot electrons lose their excess energy very rapidly.”
Harnessing the energy from hot electrons could lead to a new generation of high-efficiency solar cells, added Lindenberg.
“One of the grand challenges is finding a way to capture the excess energy from a hot electron before it relaxes,” he said. “The idea is that if you could extract the current associated with hot electrons before the energy dissipates, you could increase the efficiency of the solar cell. People have argued that it’s possible to create hot electrons in perovskites that live much longer than they do in silicon. That’s part of the excitement around perovskites.”
The study revealed that in hybrid perovskites, hot electrons separate from holes faster and more efficiently than electrons excited by infrared light.
“For the first time we can measure how fast this separation occurs,” Lindenberg said. “This will provide important new information on how to design solar cells that use hot electrons.”
Toxicity and Stability
The ability to measure terahertz emissions could also lead to new research on non-toxic alternatives to conventional lead-based perovskites, said Guzelturk.
“Most of the alternative materials being considered are not as efficient at generating electricity as lead,” he said. “Our findings might allow us to understand why lead composition works so well while other materials don’t, and to investigate the degradation of these devices by looking directly at the atomic structure and how it changes.”
Other co-authors of the study are staff scientist Christopher Tassone and postdoctoral scholar Karsten Bruening with SLAC’s SSRL Materials Science Division; Hemamala Karunadsa, assistant professor of chemistry, and graduate students Rebecca Belisle, Rohit Prasanna and Matthew Smith at Stanford; and Venkatraman Gopalan, professor of materials science and engineering, and graduate student Yakun Yuan at Pennsylvania State University.
The work was funded by SLAC, the National Science Foundation and the DOE Office of Science. SIMES is jointly operated by Stanford and SLAC.
Page 2 of 2Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.
Beyond Thermal Conductivity: Exploring Polymer-based TIM Strategies for High-power-density Electronics
10/13/2025 | Padmanabha Shakthivelu and Nico Bruijnis, MacDermid Alpha Electronics SolutionsAs power density and thermal loads continue to increase, effective thermal management becomes increasingly important. Rapid and efficient heat transfer from power semiconductor chip packages is essential for achieving optimal performance and ensuring long-term reliability of temperature-sensitive components. This is particularly crucial in power systems that support advanced applications such as green energy generation, electric vehicles, aerospace, and defense, along with high-speed computing for data centers and artificial intelligence (AI).